首页> 外文期刊>Astronomy and astrophysics >Anatomy of the massive star-forming region S106
【24h】

Anatomy of the massive star-forming region S106

机译:大型恒星形成区域S106的解剖

获取原文
           

摘要

The central area (40″? ×?40″) of the bipolar nebula S106 was mapped in the [O? I ] line at 63.2 μ m (4.74 THz) with high angular (6″) and spectral (0.24 MHz) resolution, using the GREAT heterodyne receiver on board SOFIA. The spatial and spectral emission distribution of [O? I ] is compared to emission in the CO 16 →15, [C? II ] 158 μ m, and CO 11 →10 lines, mm-molecular lines, and continuum. The [O? I ] emission is composed of several velocity components in the range from –30 to 25 km s~(?1). The high-velocity blue- and red-shifted emission ( v = ?30 to –9 km s~(?1)and 8 to 25 km s~(?1)) can be explained as arising from accelerated photodissociated gas associated with a dark lane close to the massive binary system S106 IR, and from shocks caused by the stellar wind and/or a disk–envelope interaction. At velocities from –9 to –4 km s~(?1)and from 0.5 to 8 km s~(?1)line wings are observed in most of the lines that we attribute to cooling in photodissociation regions (PDRs) created by the ionizing radiation impinging on the cavity walls. The velocity range from –4 to 0.5 km s~(?1)is dominated by emission from the clumpy molecular cloud, and the [O? I ], [C? II ], and high-J CO lines are excited in PDRs on clump surfaces that are illuminated by the central stars. Modelling the line emission in the different velocity ranges with the KOSMA- τ code constrains a radiation field χ of a few times 10~(4)and densities n of a few times 10~(4)cm~(?3). Considering self-absorption of the [O? I ] line results in higher densities (up to 10~(6)cm~(?3)) only for the gas component seen at high blue- and red velocities. We thus confirm the scenario found in other studies that the emission of these lines can be explained by a two-phase PDR, but attribute the high-density gas to the high-velocity component only. The dark lane has a mass of ~275 M _(⊙)and shows a velocity difference of ~1.4 km s~(?1)along its projected length of ~1 pc, determined from H~(13)CO~(+)1 →0 mapping. Its nature depends on the geometry and can be interpreted as a massive accretion flow (infall rate of ~2.5 × 10~(?4) M _(⊙)yr~(?1)), or the remains of it, linked to S106 IR/FIR. The most likely explanation is that the binary system is at a stage of its evolution where gas accretion is counteracted by the stellar winds and radiation, leading to the very complex observed spatial and kinematic emission distribution of the various tracers.
机译:双极星云S106的中心区域(40“?×?40”)映射在[O?使用SOFIA板上的GREAT外差接收器,以63.2μm(4.74 THz)的频率获得高角度(6“)和光谱(0.24 MHz)分辨率的I]线。 [O?的空间和光谱发射分布。 I]与CO 16→15中的排放[C? II] 158μm,CO 11→10线,mm分子线和连续体。 [O? I 1发射由–30至25 km s〜(?1)范围内的几个速度分量组成。高速蓝移和红移发射(v =?30至–9 km s〜(?1)和8至25 km s〜(?1))可以解释为是由加速的光解离气体与靠近大型二元系统S106 IR的暗通道,以及恒星风和/或磁盘-包络相互作用所引起的冲击。在从–9到–4 km s〜(?1)的速度以及从0.5到8 km s〜(?1)的速度时,在我们认为归因于光解离区(PDR)冷却的大多数管线中都观察到线翼。撞击腔壁的电离辐射。速度范围为–4到0.5 km s〜(?1),主要来自块状分子云的发射,而[O?我知道了? II]和高J CO线在中心星体照亮的团块表面上的PDR中被激发。用KOSMA-τ码对不同速度范围内的线发射进行建模,将辐射场χ限制为几倍10〜(4),并将密度n限制为几倍10〜(4)cm〜(?3)。考虑到[O?仅对于在高蓝,红速度下观察到的气体成分,I]线会导致更高的密度(高达10〜(6)cm〜(?3))。因此,我们证实了在其他研究中发现的情景,即可以通过两相PDR来解释这些管线的排放,但只能将高密度气体归因于高速成分。暗车道的质量约为275 M _(⊙),其投影长度约为1 pc,由H〜(13)CO〜(+)决定,其速度差约为1.4 km s〜(?1)。 1→0映射。它的性质取决于几何形状,并且可以解释为大量的吸积流(下降速率约为2.5×10〜(?4)M _(⊙)yr〜(?1)),或者其剩余部分与S106相关联IR / FIR。最有可能的解释是,二元系统正处于其演化阶段,其中恒星风和辐射抵消了积气,导致观测到的各种示踪剂的空间和运动排放分布非常复杂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号