...
首页> 外文期刊>Astronomy and astrophysics >Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012
【24h】

Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

机译:SDO / AIA在2012年2月22日观测到日冕雨的形成和演变

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods. We used time series of the 171 ?? and 304 ?? spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results. Observations show that a coronal loop disappeared in the 171 ? channel and appeared in the 304 ? line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km?s-1, 60 km?s-1 and 40 km?s-1. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km?s-1 and 90 km?s-1, respectively. Conclusions. The formation of coronal rain blobs is connected with the process of catastrophic cooling. The different acceleration of different coronal rain blobs might be due to the different values in the density ratio of blob to corona. All blobs leave trails, which might be a result of continuous cooling in their tails.
机译:上下文。目前尚不完全了解日冕雨的形成和动力学。日冕雨是由太阳日冕中的热不稳定性向太阳表面形成的,冷却而致密的斑点的下降,其加速度小于重力自由落体。目的我们旨在研究冠状雨形成的观测证据,并追踪各个斑点的详细动态。方法。我们使用了171 ??和304 ??于2012年2月22日在活动区AR 11420上方的太阳动态天文台(SDO)上的大气成像组件(AIA)获得的光谱线。结果。观察发现,冠状环在171?处消失了。频道并出现在304?超过一个小时后的直线,表明冠状环从1 MK迅速冷却到0.05 MK。能量估计显示辐射高于热量输入,这表示所谓的灾难性冷却。冷却伴随着以下降的冷等离子体形式的日冕雨的形成。我们研究了两个不同的下降斑点序列。第一序列包括三个不同的斑点。斑点的平均速度估计为50 km?s-1、60 km?s-1和40 km?s-1。多项式拟合显示了不同斑点的加速度的不同值,这些值低于太阳日冕中的自由落体。第一和第二个斑点沿着相同的路径移动,但是分别具有和不具有加速度。我们对两个连续的斑点进行了简单的数值模拟,结果表明第二个斑点在被第一个斑点通过的介质中移动。因此,第二个斑点具有相对较高的速度且没有加速度,如观察结果所示。第二个序列包括两个不同的斑点,其平均速度分别为100 km?s-1和90 km?s-1。结论。日冕雨滴的形成与灾难性降温过程有关。不同冠状雨滴的加速度不同可能是由于斑点与日冕的密度比值不同所致。所有斑点都留下痕迹,这可能是其尾巴不断冷却的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号