...
首页> 外文期刊>Astronomy and astrophysics >H2 formation on PAHs in photodissociation regions: a high-temperature pathway to molecular hydrogen
【24h】

H2 formation on PAHs in photodissociation regions: a high-temperature pathway to molecular hydrogen

机译:在光解离区的PAH上形成H2:分子氢的高温途径

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims. Molecular hydrogen is the most abundant molecule in the Universe. It is thought that a large portion of H2 forms by association of hydrogen atoms to polycyclic aromatic hydrocarbons (PAHs). We model the influence of PAHs on total H2 formation rates in photodissociation regions (PDRs) and assess the effect of these formation rates on the total cloud structure. Methods. We set up a chemical kinetic model at steady state in a PDR environment and included radiative transfer to calculate the chemistry at different depths in the PDR. This model includes known dust grain chemistry for the formation of H2 and a H2 formation mechanism on PAHs. Since H2 formation on PAHs is impeded by thermal barriers, this pathway is only efficient at higher temperatures (T> 200 K). At these temperatures the conventional route of H2 formation via H atoms physisorbed on dust grains is no longer feasible, so the PAH mechanism enlarges the region where H2 formation is possible. Results. We find that PAHs have a significant influence on the structure of PDRs. The extinction at which the transition from atomic to molecular hydrogen occurs strongly depends on the presence of PAHs, especially for PDRs with a strong external radiation field. A sharp spatial transition between fully dehydrogenated PAHs on the outside of the cloud and normally hydrogenated PAHs on the inside is found. As a proof of concept, we use coronene to show that H2 forms very efficiently on PAHs, and that this process can reproduce the high H2 formation rates derived in several PDRs.
机译:目的氢分子是宇宙中最丰富的分子。据认为,H 2的大部分是通过氢原子与多环芳烃(PAHs)缔合而形成的。我们对光解离区(PDR)中总H2形成速率对PAHs的影响进行建模,并评估这些形成速率对总云结构的影响。方法。我们在PDR环境中建立了稳态的化学动力学模型,并包括了辐射转移,以计算PDR不同深度处的化学反应。该模型包括用于H2形成的已知尘埃化学和PAHs上H2形成的机理。由于热障阻碍了PAH上的H2形成,因此该途径仅在较高温度(T> 200 K)下有效。在这些温度下,通过物理吸附在尘埃颗粒上的H原子形成H2的常规途径不再可行,因此PAH机理扩大了可能形成H2的区域。结果。我们发现,PAHs对PDR的结构具有重大影响。从原子氢到分子氢的跃迁发生的绝灭很大程度上取决于PAH的存在,特别是对于具有强大外部辐射场的PDR。在云的外部完全脱氢的PAH与内部的通常氢化的PAH之间发现了急剧的空间过渡。作为概念的证明,我们使用异戊二烯显示H2在PAH上非常有效地形成,并且该过程可以重现多个PDR中产生的高H2形成速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号