...
首页> 外文期刊>Astronomy and astrophysics >Water deuteration and ortho-to-para nuclear spin ratio of H2 in molecular clouds formed via the accumulation of H?I gas
【24h】

Water deuteration and ortho-to-para nuclear spin ratio of H2 in molecular clouds formed via the accumulation of H?I gas

机译:通过H2I气体的积聚形成的分子云中的水氘和H2的邻位对准核自旋比

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We investigate the water deuteration ratio and ortho-to-para nuclear spin ratio of H2 (OPR(H2)) during the formation and early evolution of a molecular cloud, following the scenario that accretion flows sweep and accumulate H?i gas to form molecular clouds. We follow the physical evolution of post-shock materials using a one-dimensional shock model, combined with post-processing gas-ice chemistry simulations. This approach allows us to study the evolution of the OPR(H2) and water deuteration ratio without an arbitrary assumption of the initial molecular abundances, including the initial OPR(H2). When the conversion of hydrogen into H2 is almost complete the OPR(H2) is already much smaller than the statistical value of three because of the spin conversion in the gas phase. As the gas accumulates, the OPR(H2) decreases in a non-equilibrium manner. We find that water ice can be deuterium-poor at the end of its main formation stage in the cloud, compared to water vapor observed in the vicinity of low-mass protostars where water ice is sublimated. If this is the case, the enrichment of deuterium in water should mostly occur at somewhat later evolutionary stages of star formation, i.e., cold prestellar/protostellar cores. The main mechanism to suppress water ice deuteration in the cloud is the cycle of photodissociation and reformation of water ice, which efficiently removes deuterium from water ice chemistry. The removal efficiency depends on the main formation pathway of water ice. The OPR(H2) plays a minor role in water ice deuteration at the main formation stage of water ice.
机译:我们在分子云的形成和早期演化过程中研究了H2(OPR(H2))的水氘化率和邻-对副核自旋率,该过程遵循增生流扫过并积聚H?i气体形成分子的情况云。我们使用一维激波模型跟踪冲击后材料的物理演化,并结合后处理气冰化学模拟。这种方法使我们能够研究OPR(H2)和氘的比率的演变,而无需任意假设包括初始OPR(H2)在内的初始分子丰度。当氢气几乎完全转化为H2时,由于气相中的自旋转化,OPR(H2)已经远远小于三的统计值。随着气体的积累,OPR(H2)以非平衡方式降低。我们发现,与在低质量原恒星附近升华了水冰的水蒸气相比,水冰在云的主要形成阶段结束时可以贫氘。如果是这样,氘在水中的富集应主要发生在恒星形成的较晚的演化阶段,即冷的星前/原恒星核心。抑制云中水冰氘的主要机制是水冰的光解离和重整循环,从而有效地将氘从水冰化学中去除。去除效率取决于水冰的主要形成途径。在水冰的主要形成阶段,OPR(H2)在水冰氘化中起次要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号