...
首页> 外文期刊>Astronomy and astrophysics >From forced collapse to H?ii region expansion in Mon R2: Envelope density structure and age determination with Herschel
【24h】

From forced collapse to H?ii region expansion in Mon R2: Envelope density structure and age determination with Herschel

机译:从星期一R2中的强制倒塌到H?ii区域扩展:Herschel的信封密度结构和年龄确定

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The surroundings of H?ii regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H?ii regions in the MonR2 molecular cloud. Aims. We aim to investigate the density structure of envelopes surrounding H?ii regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H?ii region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods. Column density and temperature images derived from Herschel data were used together to model the structure of H?ii bubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results. The four hot bubbles associated with H?ii regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope’s radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H?ii regions could be free-falling because they display shallow density profiles: ρ(r) ∝ r? q with . As for their outer parts, the two compact H?ii regions show a ρ(r) ∝ r-2 profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH?ii region shows a steeper outer profile, ρ(r) ∝ r-2.5, that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions. The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, texp ~ 0.1 Myr, for the dense UCH?ii and compact H?ii regions and ~ 0.35 Myr for the extended H?ii region. Numerical simulations with and without gravity show that the so-called lifetime problem of H?ii regions is an artefact of theories that do not take their surrounding neutral envelopes with slowly decreasing density profiles into account. The envelope transition radii between the shallow and steeper density profiles are used to estimate the time elapsed since the formation of the first protostellar embryo, tinf ~ 1 Myr, for the ultra-compact, 1.5?3 Myr for the compact, and greater than ~6 Myr for the extended H?ii regions. These results suggest that the time needed to form a OB-star embryo and to start ionising the cloud, plus the quenching time due to the large gravitational potential amplified by further in-falling material, dominates the ionisation expansion time by a large factor. Accurate determination of the quenching time of H?ii regions would require additional small-scale observationnal constraints and numerical simulations including 3D geometry effects.
机译:上下文。 H?ii地区的周围环境可能对其发展,形态和演化产生深远影响。本文探讨了环境对MonR2分子云中Hii区的影响。目的我们旨在研究Hii区域周围包膜的密度结构,并确定其塌陷和电离膨胀年龄。 Mon R2分子云是理想的目标,因为它具有H?ii区域关联,该图像已作为HOBYS关键计划的一部分由Herschel PACS和SPIRE相机成像。方法。从Herschel数据获得的柱密度和温度图像一起用于模拟H 2气泡及其周围包膜的结构。由此产生的观测约束条件用于通过分析计算和数值模拟来跟踪Mon R2电离区域的发展。结果。与H 2区域相关的四个热气泡被致密,冷和中性的气体包层包围,它们部分地嵌入细丝中。包络线的径向密度分布让人想起低质量的原恒星包络线。所有四个H?ii区域的包络线的内部都可以自由下落,因为它们显示出较浅的密度分布:ρ(r)∝ r? q与。至于它们的外部,两个紧凑的H Hii区域显示出ρ(r)∝ r-2轮廓,这是奇异等温球体平衡结构的典型特征。相反,中部UCHCHii区域显示出更陡峭的外部轮廓ρ(r)∝ r-2.5,这可以解释为材料被迫塌陷,其中外部因素压倒了内部压力支撑。结论。加热的气泡的大小,辐照恒星的光谱类型以及平均初始中性气体密度可用于估计密实的UCH 2和密实的H 2区域的电离膨胀时间texp〜0.1 Myr。对于扩展的Hii区域为0.35 Myr。带有或不带有重力的数值模拟表明,H ii区域的所谓寿命问题是理论的伪像,这些理论没有考虑其周围的中性包络线并逐渐降低密度分布。浅和较陡的密度剖面之间的包络过渡半径用于估计自第一个原生星胚形成以来所经过的时间,对于超紧凑型,tinf〜1 Myr,对于紧凑型,为1.5?3 Myr,大于〜对于扩展的H?ii地区,为6 Myr。这些结果表明,形成OB星胚并开始电离云所需的时间,加上由于进一步下落的材料放大而产生的巨大引力而导致的淬灭时间,在很大程度上决定了电离膨胀时间。准确确定H ii区域的淬火时间将需要附加的小规模观测约束和包括3D几何效应的数值模拟。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号