...
首页> 外文期刊>Astronomy and astrophysics >Filament fragmentation in high-mass star formation
【24h】

Filament fragmentation in high-mass star formation

机译:高质量恒星形成中的细丝破碎

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Filamentary structures in the interstellar medium are crucial ingredients of the star formation process. They fragment to form individual star-forming cores, and at the same time they may also funnel gas toward the central gas cores, providing an additional gas reservoir. Aims. We want to resolve the length scales for filament formation and fragmentation (resolution ≤0.1?pc), in particular the Jeans length and cylinder fragmentation scale. Methods. We have observed the prototypical high-mass star-forming filament IRDC?18223 with the Plateau de Bure Interferometer (PdBI) in the 3.2?mm continuum and N2H+(1–0) line emission in a ten-field mosaic at a spatial resolution of ~ 4′′ (~14?000?au). Results. The dust continuum emission resolves the filament into a chain of at least 12 relatively regularly spaced cores. The mean separation between cores is ~0.40(± 0.18)?pc. While this is approximately consistent with the fragmentation of an infinite, isothermal, and gravitationally bound gas cylinder, a high mass-to-length ratio of M/l ≈ 1000 M⊙?pc-1 requires additional turbulent and/or magnetic support against radial collapse of the filament. The N2H+(1?0) data reveal a velocity gradient perpendicular to the main filament. Although rotation of the filament cannot be excluded, the data are also consistent with the main filament being comprised of several velocity-coherent subfilaments. Furthermore, this velocity gradient perpendicular to the filament resembles results toward Serpens south that are interpreted as signatures of filament formation within magnetized and turbulent sheet-like structures. Lower-density gas tracers ([CI] and C18O) reveal a similar red- and blueshifted velocity structure on scales around 60′′ east and west of the filament. This may tentatively be interpreted as a signature of the large-scale cloud and the smaller scale filament being kinematically coupled. We do not identify a velocity gradient along the axis of the filament. This may be due to no significant gas flows along the filamentary axis, but it may also be partly caused by a low inclination angle of the filament with respect to the plane of the sky minimizing such a signature. Conclusions. The IRDC?18223 3.2?mm continuum data are consistent with thermal fragmentation of a gravitationally bound and compressible gas cylinder. However, the high mass-to-length ratio requires additional support – most likely turbulence and/or magnetic fields – against collapse. The N2H+ spectral line data indicate a kinematic origin of the filament, but we cannot conclusively differentiate whether it has formed out of (pre-existing) velocity-coherent subfilaments, whether magnetized converging gas flows, a larger-scale collapsing cloud, or even whether rotation played a significant role during filament formation.
机译:上下文。星际介质中的丝状结构是恒星形成过程的关键要素。它们破碎形成单个形成恒星的核,同时它们也可能将气体漏向中央气核,从而提供了一个额外的储气库。目的我们要解析长丝形成和断裂的长度尺度(分辨率≤0.1?pc),尤其是吉恩斯长度和圆柱断裂尺度。方法。我们已经观察到原型高质量恒星形成灯丝IRDC?18223,其在3.2?mm连续区域内具有Plateau de Bure干涉仪(PdBI),并且在10场马赛克中以N2H +(1-0)线发射,其空间分辨率为〜4′′(〜14?000?au)。结果。连续的粉尘排放将细丝分解成至少12个相对规则间隔的纤芯链。芯之间的平均间隔约为0.40(±0.18)?pc。虽然这与无限大,等温且受重力约束的气瓶的破碎大致相符,但M / l≈1000M⊙pc-1的高质量长度比需要针对径向的附加湍流和/或磁性支撑灯丝塌陷。 N2H +(1→0)数据揭示了垂直于主丝的速度梯度。尽管不能排除细丝的旋转,但数据也与主细丝由几个速度相干的子细丝组成一致。此外,垂直于细丝的该速度梯度类似于朝向塞尔彭斯南部的结果,这被解释为磁化且湍流的片状结构内细丝形成的标志。较低密度的气体示踪剂([CI]和C18O)在灯丝的东西向60''处显示出类似的红移和蓝移速度结构。可以暂时将其解释为大尺度云团和小尺度细丝在运动学上耦合的特征。我们没有确定沿灯丝轴的速度梯度。这可能是由于没有明显的气体沿着丝线轴流动,但也可能部分是由于丝线相对于天空平面的倾斜角度较小而使这种特征最小化。结论。 IRDC?18223 3.2?mm连续数据与重力约束和可压缩气瓶的热破碎一致。但是,高的质量长度比需要额外的支撑-最有可能的湍流和/或磁场-才能防止坍塌。 N2H +谱线数据指示了灯丝的运动学起源,但我们不能最终确定它是否由(预先存在的)速度相干子丝形成,是否磁化的会聚气流,更大规模的塌陷云,甚至是否旋转在长丝形成过程中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号