首页> 外文期刊>Astronomy and astrophysics >The structure and early evolution of massive star forming regions - Substructure in the infrared dark cloud SDC13
【24h】

The structure and early evolution of massive star forming regions - Substructure in the infrared dark cloud SDC13

机译:大质量恒星形成区的结构和早期演化-红外暗云SDC13中的子结构

获取原文
           

摘要

Context. Investigations into the substructure of massive star forming regions are essential for understanding the observed relationships between core mass distributions and mass distributions in stellar clusters, differentiating between proposed mechanisms of massive star formation. Aims. We study the substructure in the two largest fragments (i.e. cores) MM1 and MM2, in the infrared dark cloud complex SDC13. As MM1 appears to be in a later stage of evolution than MM2, comparing their substructure provides an insight in to the early evolution of massive clumps. Methods. We report the results of high resolution SMA dust continuum observations towards MM1 and MM2. Combining these data with Herschel observations, we carry out RADMC-3D radiative transfer modelling to characterise the observed substructure. Results. SMA continuum data indicates 4 sub-fragments in the SDC13 region. The nature of the second brightest sub-fragment (B) is uncertain as it does not appear as prominent at the lower MAMBO resolution or at radio wavelengths. Statistical analysis indicates that it is unlikely to be a background source, an AGB star, or the free-free emission of a HII region. It is plausible that B is a runaway object ejected from MM1. MM1, which is actively forming stars, consists of two sub-fragments A and C. This is confirmed by 70 μ m Herschel data. While MM1 and MM2 appear quite similar in previous low resolution observations, at high resolution, the sub-fragment at the centre of MM2 (D) is much fainter than sub-fragment at the centre of MM1 (A). RADMC-3D models of MM1 and MM2 are able to reproduce these results, modelling MM2 with a steeper density profile and higher mass than is required for MM1. The relatively steep density profile of MM2 depends on a significant temperature decrease in its centre, justified by the lack of star formation in MM2. A final stellar population for MM1 was extrapolated, indicating a star formation efficiency typical of regions of core and cluster formation. Conclusions. The proximity of MM1 and MM2 suggests they were formed at the similar times, however, despite having a larger mass and steeper density profile, the absence of stars in MM2 indicates that it is in an earlier stage of evolution than MM1. This suggests that the density profiles of such cores become shallower as they start to form stars and that evolutionary timescales are not solely dependent on initial mass. Some studies also indicate that the steep density profile of MM2 makes it more likely to form a single massive central object, highlighting the importance of the initial density profile in determining the fragmentation behaviour in massive star forming regions.
机译:上下文。研究大质量恒星形成区域的子结构对于理解星团中核心质量分布与质量分布之间观察到的关系,区分拟议的大质量恒星形成机制至关重要。目的我们研究了红外暗云复合体SDC13中两个最大片段(即核心)MM1和MM2中的子结构。由于MM1似乎比MM2处于进化的后期,因此比较它们的子结构可以为大规模团块的早期进化提供一个见识。方法。我们报告了对MM1和MM2的高分辨率SMA尘埃连续体观测结果。将这些数据与Herschel观测值相结合,我们进行了RADMC-3D辐射传输建模,以表征观测到的子结构。结果。 SMA连续谱数据指示SDC13区域中有4个子片段。第二个最亮的子片段(B)的性质尚不确定,因为在较低的MAMBO分辨率或无线电波长下,它似乎并不突出。统计分析表明,它不太可能是背景源,AGB星或HII区域的自由发射。可能B是从MM1弹出的失控物体。活跃形成恒星的MM1由两个子碎片A和C组成。这由70μm的Herschel数据证实。尽管MM1和MM2在以前的低分辨率观测中看起来非常相似,但在高分辨率下,MM2(D)中心的子片段比MM1(A)中心的子片段要模糊得多。 MM1和MM2的RADMC-3D模型能够重现这些结果,以比MM1所需的密度分布更陡,质量更高的MM2进行建模。 MM2的相对较陡的密度分布取决于其中心温度的显着下降,这是由于MM2中没有恒星形成所致。推断出MM1的最终恒星种群,这表明典型的核心和星团形成区域的恒星形成效率。结论。 MM1和MM2的接近表明它们是在相似的时间形成的,但是,尽管具有更大的质量和更陡峭的密度分布,但MM2中没有恒星,这表明它比MM1处于演化的早期。这表明这种核的密度分布随着它们开始形成恒星而变得更浅,并且演化时标并不仅仅取决于初始质量。一些研究还表明,MM2的陡峭密度剖面使其更可能形成单个块状中心物体,突出了初始密度剖面在确定块状恒星形成区域中碎片行为方面的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号