首页> 外文期刊>Astronomy and astrophysics >The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime
【24h】

The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime

机译:跨光度体系的原行星盘行星形成区域的分子组成

获取原文
       

摘要

Context. Near- to mid-infrared observations of molecular emission from protoplanetary disks show that the inner regions are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (Teff ≈ 3000 K) are potentially (i) more carbon-rich; and (ii) more molecule-rich than their hotter counterparts (Teff ? 4000 K). Aims. We explore the chemical composition of the planet-forming region (<10 AU) of protoplanetary disks around stars over a range of spectral types (from M dwarf to Herbig Ae) and compare with the observed trends. Methods. Self-consistent models of the physical structure of a protoplanetary disk around stars of different spectral types are coupled with a comprehensive gas-grain chemical network to map the molecular abundances in the planet-forming zone. The effects of (i) N2 self shielding; (ii) X-ray-induced chemistry; and (iii) initial abundances, are investigated. The chemical composition in the “observable” atmosphere is compared with that in the disk midplane where the bulk of the planet-building reservoir resides. Results. M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N2 self shielding has only a small effect in the disk molecular layer and does not explain the higher C2H2/HCN ratios observed towards cooler stars. The models underproduce the OH/H2O column density ratios constrained in Herbig Ae disks, despite reproducing (within an order of magnitude) the absolute value for OH: the inclusion of self shielding for H2O photodissociation only increases this discrepancy. One possible explanation is the adopted disk structure. Alternatively, the “hot” H2O (T ? 300 K) chemistry may be more complex than assumed. The results for the atmosphere are independent of the assumed initial abundances; however, the composition of the disk midplane is sensitive to the initial main elemental reservoirs. The models show that the gas in the inner disk is generally more carbon rich than the midplane ices. This effect is most significant for disks around cooler stars. Furthermore, the atmospheric C/O ratio appears larger than it actually is when calculated using observable tracers only. This is because gas-phase O2 is predicted to be a significant reservoir of atmospheric oxygen. Conclusions. The models suggest that the gas in the inner regions of disks around cooler stars is more carbon rich; however, calculations of the molecular emission are necessary to definitively confirm whether the chemical trends reproduce the observed trends.
机译:上下文。从原行星盘分子发射的近红外到中红外观测表明,内部区域富含少量有机挥发物(例如,C2H2和HCN)。数据趋势表明,较冷恒星周围的盘(Teff≈3000 K)可能(i)碳含量更高; (ii)比其较热的同类物更富分子(Teff?4000 K)。目的我们探索了一系列光谱类型(从M矮星到Herbig Ae)围绕恒星的原行星盘行星形成区域(<10 AU)的化学成分,并与观察到的趋势进行了比较。方法。围绕不同光谱类型的恒星的原行星盘物理结构的自洽模型与全面的气粒化学网络相结合,以绘制出行星形成区中的分子丰度。 (i)N2自屏蔽的影响; (ii)X射线诱导化学;以及(iii)最初的丰度。将“可观察到”的大气中的化学成分与建造行星储层的大部分位于磁盘中平面的化学成分进行了比较。结果。中矮盘大气的分子含量比T Tauri或Herbig Ae盘高。弱的远紫外线通量有助于保持这种复杂性,而这种复杂性会通过X射线诱导的离子分子化学反应而增强。 N2自屏蔽在盘状分子层中仅产生很小的影响,不能解释对较冷恒星观察到的更高的C2H2 / HCN比。尽管再现了OH的绝对值(在一个数量级内),但是这些模型仍未满足Herbig Ae磁盘约束的OH / H2O柱密度比:包括针对H2O光解离的自屏蔽功能只会增加这种差异。一种可能的解释是采用的磁盘结构。或者,“热” H2O(T≥300K)化学物质可能比假设的要复杂。大气的结果与假定的初始丰度无关。然而,盘中平面的组成对初始的主要元素储层很敏感。这些模型表明,内盘中的气体通常比中层冰层富含碳。对于较冷恒星周围的磁盘,此影响最为明显。此外,大气C / O比值似乎比仅使用可观察示踪剂计算时的实际值大。这是因为预计气相O2是大气中氧气的重要储藏库。结论。这些模型表明,较冷恒星周围的盘状内部区域中的气体富含碳。但是,分子发射的计算对于确定化学趋势是否能够再现观察到的趋势是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号