...
首页> 外文期刊>Astronomy and astrophysics >Transport and diffusion of particles due to transverse drift waves
【24h】

Transport and diffusion of particles due to transverse drift waves

机译:由于横向漂移波引起的颗粒的传输和扩散

获取原文
           

摘要

Transport and diffusion of plasma particles perpendicular and parallel to the magnetic field is discussed in the framework of the transverse drift wave theory. The starting model includes the density and magnetic field gradients perpendicular to the magnetic field vector. In?such an inhomogeneous environment the transverse drift wave naturally develops. The transverse drift wave is a low frequency mode, with the frequency far below the ion gyro-frequency, it?is driven by these gradients and it propagates perpendicular to them. The mode is also purely perpendicular to the magnetic field and it is electromagnetically transverse, which implies that when its wave vector is perpendicular to the magnetic field vector, the perturbed electric field is along the equilibrium magnetic field, while in the same time the perturbed magnetic field is in the direction of the background gradients. In?application to the solar wind, it?is shown that very small wave electric field amplitude, of?the order of 10-7?V/m, within one wave period can produce the drift of protons in both directions, perpendicular to the ecliptic plane and also along the background magnetic field, to?distances measured in millions of kilometers. The electric field along the magnetic field vector implies particle acceleration in the same direction. When a critical threshold velocity of the particle is achieved, the particle motion becomes stochastic. This is a completely new nonlinear stochastic mechanism which follows from the very specific geometry of the transverse drift mode. Particle drift perpendicular to the magnetic field vector means a diffusion of particles, with the effective diffusion coefficient for ions that is at least 11 orders of magnitude larger than the classic diffusion coefficient. The features of this diffusion are:?within certain time interval, initially faster particles will diffuse to larger distances, and the same holds for protons in comparison to heavier ions. For electrons the effective diffusion coefficient can easily match the one obtained from observations, i.e.,?to become of the order of 1017?m2/s. It?is also expected that the wave-induced stochastic motion will considerably increase the effective collision frequency in such an environment which?is, with respect to its mean parameters, practically collision-lees. Hence, the solar wind regions affected by such a stochastic acceleration may show various unexpected features that are typical for collisional plasmas.
机译:在横向漂移波理论的框架内讨论了垂直和平行于磁场的等离子体粒子的传输和扩散。初始模型包括垂直于磁场矢量的密度和磁场梯度。在这种不均匀的环境中,自然会产生横向漂移波。横向漂移波是一种低频模式,其频率远低于离子陀螺频率,它是由这些梯度驱动的并且垂直于它们传播。该模式也完全垂直于磁场,并且是电磁横向的,这意味着当其波矢量垂直于磁场矢量时,被扰动的电场沿着平衡磁场,而同时被扰动的磁场场沿背景渐变的方向。在太阳风中的应用表明,在一个波周期内,非常小的波电场振幅(约10-7?V / m)可在垂直于该方向的两个方向上产生质子漂移。黄道平面和背景磁场,其距离以百万公里为单位。沿着磁场矢量的电场意味着粒子在相同方向上加速。当达到颗粒的临界阈值速度时,颗粒运动变得随机。这是一种全新的非线性随机机制,它遵循横向漂移模式的特定几何形状。垂直于磁场矢量的粒子漂移意味着粒子的扩散,离子的有效扩散系数比经典扩散系数大至少11个数量级。这种扩散的特征是:在一定的时间间隔内,最初,较快的粒子将扩散到更大的距离,并且与重离子相比,质子也保持不变。对于电子,有效扩散系数可以很容易地与从观察中获得的扩散系数相匹配,即,变为约1017μm2/ s。还可以预期,在这种环境下,由波引起的随机运动将大大增加有效的碰撞频率,就其平均参数而言,该频率实际上是碰撞-碰撞。因此,受这种随机加速度影响的太阳风区域可能会显示出各种碰撞等离子体常见的意外特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号