...
首页> 外文期刊>Astronomy and astrophysics >Excitation and abundance study of CO$^+$ in the interstellar medium
【24h】

Excitation and abundance study of CO$^+$ in the interstellar medium

机译:星际介质中CO $ ^ + $的激发和丰度研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Observations of CO+ suggest column densities on the order 1012cm-2 that can not be reproduced by many chemical models. CO+ is more likely to be destroyed than excited in collisions with hydrogen. An anomalous excitation mechanism may thus have to be considered when interpreting CO+ observations. Other uncertainties in models are the chemical network, the gas temperature or the geometry of the emitting source. Similar is true for other reactive ions that will be observed soon with the Herschel Space Observatory. Aims. Chemical constraints are explored for observable CO+ abundances. The influence of an anomalous excitation mechanism on CO+ line intensities is investigated. Model results are compared to observations. Methods. Chemical models are used to perform a parameter study of CO+ abundances. Line fluxes are calculated for cm-2 and different gas densities and temperatures using a non-LTE escape probability method. The chemical formation and destruction rates are considered explicitly in the detailed balance equations of the radiative transfer. In addition, the rotational levels of CO+ are assumed to be excited upon chemical formation according to a formation temperature. Collisional excitation by atomic and molecular hydrogen as well as by electrons is studied for conditions appropriate to dense photon-dominated regions (PDRs) and star-forming environments. Results. Chemical models are generally able to produce high fractional CO+ abundances (). In a far-ultraviolet (FUV) dominated environment, however, high abundances of CO+ are only produced in regions with a Habing field and 600K, posing a strong constraint on the gas temperature. For gas densities 106cm-3 and temperatures 600K, the combination of chemical and radiative transfer analysis shows little effect on intensities of CO+ lines with upper levels .Significantly different line fluxes are calculated with an anomalous excitation mechanism, however, for transitions with higher upper levels and densities 106cm-3. The Herschel Space Observatory is able to reveal such effects in the terahertz wavelength regime. Ideal objects to observe are protoplanetary disks with densities 106cm-3 . It is finally suggested that the CO+ chemistry may be well understood and that the abundances observed so far can be explained with a high enough gas temperature and a proper geometry. Key words: astrochemistry - radiative transfer - ISM: molecules
机译:上下文。对CO +的观察表明,许多化学模型无法重现1012cm-2的柱密度。与氢碰撞时,CO +更有可能被破坏而不是被激发。因此,在解释CO +观测值时可能必须考虑异常激发机制。模型中的其他不确定性是化学网络,气体温度或发射源的几何形状。其他反应离子也将类似,不久将通过赫歇尔太空天文台观测到。目的探讨了可观察到的CO +丰度的化学约束。研究了异常激发机制对CO +谱线强度的影响。将模型结果与观察结果进行比较。方法。化学模型用于进行CO +丰度的参数研究。使用非LTE逃逸概率方法针对cm-2以及不同的气体密度和温度计算线通量。在详细的辐射传递平衡方程中明确考虑了化学形成和破坏的速率。另外,假定根据形成温度在化学形成时激发了CO +的旋转水平。研究了原子和分子氢以及电子的碰撞激发,以适合于致密的光子占主导的区域(PDR)和恒星形成环境。结果。化学模型通常能够产生高分数的CO +丰度()。但是,在以远紫外线(FUV)为主的环境中,仅在具有Habing场和600K的区域中才会产生大量的CO +,这对气体温度构成了强烈的约束。对于气体密度为106cm-3且温度为600K的气体,化学和辐射传递分析的组合显示出对高浓度CO +谱线强度的影响很小,但是通过异常激励机制计算出明显不同的线通量,但是对于高浓度较高的跃迁和密度106cm-3。赫歇尔太空天文台能够揭示太赫兹波长范围内的这种影响。理想的观测对象是密度为106cm-3的原行星盘。最终表明,可以很好地理解CO +的化学性质,并且可以用足够高的气体温度和适当的几何形状来解释到目前为止观察到的丰度。关键词:天化学-辐射转移-ISM:分子

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号