...
首页> 外文期刊>Applied Microbiology >Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA
【24h】

Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA

机译:细菌中广泛的头对头碳氢化合物生物合成和OleA的作用

获取原文
           

摘要

Previous studies identified the oleABCD genes involved in head-to-head olefinic hydrocarbon biosynthesis. The present study more fully defined the OleABCD protein families within the thiolase, α/β-hydrolase, AMP-dependent ligase/synthase, and short-chain dehydrogenase superfamilies, respectively. Only 0.1 to 1% of each superfamily represents likely Ole proteins. Sequence analysis based on structural alignments and gene context was used to identify highly likely ole genes. Selected microorganisms from the phyla Verucomicrobia , Planctomyces , Chloroflexi , Proteobacteria , and Actinobacteria were tested experimentally and shown to produce long-chain olefinic hydrocarbons. However, different species from the same genera sometimes lack the ole genes and fail to produce olefinic hydrocarbons. Overall, only 1.9% of 3,558 genomes analyzed showed clear evidence for containing ole genes. The type of olefins produced by different bacteria differed greatly with respect to the number of carbon-carbon double bonds. The greatest number of organisms surveyed biosynthesized a single long-chain olefin, 3,6,9,12,15,19,22,25,28-hentriacontanonaene, that contains nine double bonds. Xanthomonas campestris produced the greatest number of distinct olefin products, 15 compounds ranging in length from C_(28) to C_(31) and containing one to three double bonds. The type of long-chain product formed was shown to be dependent on the oleA gene in experiments with Shewanella oneidensis MR-1 ole gene deletion mutants containing native or heterologous oleA genes expressed in trans . A strain deleted in oleABCD and containing oleA in trans produced only ketones. Based on these observations, it was proposed that OleA catalyzes a nondecarboxylative thiolytic condensation of fatty acyl chains to generate a β-ketoacyl intermediate that can decarboxylate spontaneously to generate ketones.
机译:先前的研究确定了与头对头烯烃生物合成有关的oleABCD基因。本研究更充分地分别定义了硫解酶,α/β-水解酶,AMP依赖性连接酶/合酶和短链脱氢酶超家族中的OleABCD蛋白家族。每个超家族中只有0.1%至1%代表可能的Ole蛋白。基于结构比对和基因背景的序列分析被用来鉴定高度可能的ole基因。实验性地测试了选自门扇菌,扁平菌,绿弯曲菌,变形杆菌和放线菌的微生物,并证明它们产生长链烯烃。但是,来自同一属的不同物种有时缺乏ole基因,无法产生烯烃。总体而言,在分析的3558个基因组中,只有1.9%的证据清楚地表明含有ole基因。由不同细菌产生的烯烃的类型在碳-碳双键的数量方面差异很大。接受调查的生物数量最多,生物合成了一个包含9个双键的单一长链烯烃3,6,9,12,15,19,22,25,28-庚烷并壬烯。 Xanthomonas campestris生产最多数量的独特烯烃产物,其15种化合物的长度从C_(28)到C_(31)不等,并且包含一到三个双键。在含Shewanella oneidensis MR-1 ole基因缺失突变体的实验中,所形成的长链产物类型显示其依赖于oleA基因,该突变体含有反式表达的天然或异源oleA基因。在oleABCD中缺失并且反式包含oleA的菌株仅产生酮。基于这些观察结果,提出了OleA催化脂肪酰基链的非脱羧硫解缩合反应以生成β-酮酰基中间体,该中间体可以自发地脱羧以生成酮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号