首页> 外文期刊>Applied Microbiology >Anaplerotic Role for Cytosolic Malic Enzyme in Engineered Saccharomyces cerevisiae Strains
【24h】

Anaplerotic Role for Cytosolic Malic Enzyme in Engineered Saccharomyces cerevisiae Strains

机译:酿酒酵母菌株中胞质苹果酸酶的抗衰老作用

获取原文
       

摘要

Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO_(2). The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc~(?)) S. cerevisiae strains to grow on glucose suggested that Mae1p cannot act as a pyruvate-carboxylating, anaplerotic enzyme. In this study, relocation of malic enzyme to the cytosol and creation of thermodynamically favorable conditions for pyruvate carboxylation by metabolic engineering, process design, and adaptive evolution, enabled malic enzyme to act as the sole anaplerotic enzyme in S. cerevisiae . The Escherichia coli NADH-dependent sfcA malic enzyme was expressed in a Pyc~(?) S. cerevisiae background. When PDC2 , a transcriptional regulator of pyruvate decarboxylase genes, was deleted to increase intracellular pyruvate levels and cells were grown under a CO_(2) atmosphere to favor carboxylation, adaptive evolution yielded a strain that grew on glucose (specific growth rate, 0.06 ± 0.01 h~(?1)). Growth of the evolved strain was enabled by a single point mutation (Asp336Gly) that switched the cofactor preference of E. coli malic enzyme from NADH to NADPH. Consistently, cytosolic relocalization of the native Mae1p, which can use both NADH and NADPH, in a pyc1,2Δ pdc2 Δ strain grown under a CO_(2) atmosphere, also enabled slow-growth on glucose. Although growth rates of these strains are still low, the higher ATP efficiency of carboxylation via malic enzyme, compared to the pyruvate carboxylase pathway, may contribute to metabolic engineering of S. cerevisiae for anaerobic, high-yield C_(4)-dicarboxylic acid production.
机译:苹果酸酶催化苹果酸可逆氧化脱羧为丙酮酸和CO_(2)。酿酒酵母MAE1基因编码线粒体苹果酸酶,其提议的生理作用与氧化,苹果酸-脱羧反应有关。迄今为止,丙酮酸羧化酶阴性(Pyc-(β))酿酒酵母菌株不能在葡萄糖上生长,这表明Mae1p不能作为丙酮酸羧化的过氧化物酶起作用。在这项研究中,苹果酸酶重新定位到细胞质中,并通过代谢工程,工艺设计和适应性进化为丙酮酸羧化创造了热力学上有利的条件,使苹果酸酶可以作为酿酒酵母中的唯一抗生酶。大肠杆菌NADH依赖性sfcA苹果酸酶在啤酒酵母中表达。当丙酮酸脱羧酶基因的转录调节子PDC2被删除以增加细胞内丙酮酸水平,并且细胞在CO_(2)气氛下生长以促进羧化时,适应性进化产生了一种在葡萄糖上生长的菌株(比生长速率,0.06±0.01) h〜(?1))。通过单点突变(Asp336Gly)使进化菌株的生长得以实现,该突变将大肠杆菌苹果酸酶的辅因子偏好从NADH转换为NADPH。一致地,可以在NACO和CO_(2)气氛下生长的pyc1,2Δpdc2Δ菌株中同时使用NADH和NADPH的天然Mae1p进行胞质再定位,也使葡萄糖能够缓慢生长。尽管这些菌株的生长速率仍然很低,但与丙酮酸羧化酶途径相比,苹果酸通过羧化酶的ATP效率更高,可能有助于酿酒酵母的代谢工程化,以生产厌氧,高产的C_(4)-二羧酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号