...
首页> 外文期刊>Applied Microbiology >Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation
【24h】

Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

机译:基质矿物学对碳酸钙细菌矿化的影响:对石材养护的意义

获取原文
           

摘要

The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria ( Myxococcus xanthus , Brevundimonas diminuta , and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.
机译:研究了矿物基质组成和结构对细菌碳酸钙生产力和多晶型选择的影响。在接种了不同类型细菌的液体培养基(M-3P)中培养后,钙质(冰岛晶石单晶,大理石和多孔石灰石)和硅酸盐(玻璃盖玻片,多孔烧结玻璃和石英砂岩)上发生了细菌碳酸钙沉淀。 (在历史建筑中从多孔钙钙石中分离出的粘球菌,短杆菌和碳酸盐化细菌群落),并将无菌的M-3P培养基直接应用于具有其自身细菌群落的石灰岩和砂岩中。场发射扫描电子显微镜(FESEM),原子力显微镜(AFM),粉末X射线衍射(XRD)和二维XRD(2D-XRD)分析表明,大量的高取向方解石晶体在钙质基质上同质外延地形成,无论细菌类型如何。相反,散布的球状球v石吞噬细菌细胞在硅酸盐衬底上形成。这些结果表明,碳酸盐相的选择不是菌株特异性的,并且在相同的培养条件下,底物类型是碳酸钙多晶型物选择的决定性因素。此外,碳酸盐的生产率在很大程度上取决于底物的矿物学。与硅酸盐基质相比,钙质基质对细菌附着的亲和力更高,从而促进了细菌的生长和代谢活性,从而提高了碳酸钙水泥的产量。细菌方解石在钙质基底上连贯地生长,因此比在硅酸盐基底上非连贯形成的亚稳球ate石更具化学和机械稳定性。讨论了这些结果对细菌碳共生技术应用的意义,包括建筑石材保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号