首页> 外文期刊>Applied Microbiology >Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment
【24h】

Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

机译:通过使用来自现场生物刺激实验的蛋白质组学数据评估金属还原酶基因组规模的计算机代谢模型。

获取原文
       

摘要

Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens —specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.
机译:准确预测微生物代谢与地下物理环境之间的相互作用对于增强地下能量的开发,土壤和地下水的净化以及碳的管理十分必要。这项研究是使用野外实验期间收集的环境蛋白质组学数据来确认计算机模型中代谢功能作用的初步尝试。在地下生物刺激实验过程中收集的Shotgun全球蛋白质组学数据用于验证金属还原土杆菌的基因组规模代谢模型-具体而言,该代谢模型预测动态场条件下金属还原,生物量产量和生长速率的能力。 G.metallireducens的基于约束的计算机模拟模型将注释的基因组序列与由747个酶编码基因控制的697个反应的生理功能相关联。蛋白质组学分析显示,在2008年实验期间检测到的637个金属还原G.蛋白质中有180个与计算机模型中的特定代谢反应有关。当将用于现场实验的反应性运输模型中的场校准Fe(III)末端电子受体过程反应替换为基因组规模模型时,该模型预测通过计算机模型反应产生的最大代谢通量通常对应于催化这些反应的蛋白质含量最高。该模型预测的中枢代谢与蛋白质组学分析推断的蛋白质丰度概况非常吻合。与蛋白质组学数据的模型差异,例如与氨基酸运输和代谢相关的蛋白质相对较低的丰度,揭示了计算机模型中的途径或通量约束条件,可以对其进行更新以更准确地预测在地下环境中发生的代谢过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号