首页> 外文期刊>BMC Systems Biology >Genome-scale constraint-based modeling of Geobacter metallireducens
【24h】

Genome-scale constraint-based modeling of Geobacter metallireducens

机译:基于基因组尺度约束的金属还原细菌建模

获取原文
           

摘要

Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. Conclusion We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation.
机译:背景金属还原杆菌是第一个可以在纯培养物中生长的生物,它能够以Fe(III)氧化物作为电子受体来完全氧化有机化合物。包括G.sulfreducens和G.metallireducens在内的土壤细菌物种被用于从有机废物和可再生生物质中进行生物修复和发电。基于约束的建模方法使能够开发基因组规模的计算机模拟模型,该模型可以预测复杂生物系统的行为及其对环境的响应。这种建模方法被用来为金属还原菌的代谢提供生理和生态方面的见识。结果构建了金属还原菌基因组规模的代谢模型,包括747个基因和697个反应。与硫还原菌模型相比,金属还原菌代谢模型包含118个独特的反应,反映了许多金属还原菌的特定代谢能力。对金属还原还原菌模型的详细检查表明,其中央代谢包含一些能量效率低下的反应,而在硫酸还原还原菌模型中不存在。在丙酮酸盐上生长的金属假单胞菌的实验生物量产量低于预测的最佳生物量产量。用苯甲酸酯和乙酸盐生长的金属还原杆菌的微阵列数据表明,编码这些能量效率低下的反应的基因被苯甲酸酯上调。这些结果表明低能的反应可能在乙酸还原菌的生长过程中用乙酸盐关闭,以实现最佳的生物量产量,但在生长过程中用复杂的电子供体(例如苯甲酸酯)上调,以快速产生能量。此外,几种计算建模方法被应用于加速金属还原假单胞菌的研究。例如,使用基因组规模的代谢模型研究了具有不同电子供体和电子受体的金属还原菌的生长,这为了解金属还原菌的代谢提供了一种快速且经济有效的方法。结论我们已经开发了金属还原菌的基因组规模代谢模型,该模型具有与其已公开模型的近亲硫酸还原菌的代谢相似性和差异性。这些代谢模型共同为改善生物修复和生物能源产生的策略提供了重要资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号