首页> 外文期刊>Applied Microbiology >Validation of Heavy-Water Stable Isotope Probing for the Characterization of Rapidly Responding Soil Bacteria
【24h】

Validation of Heavy-Water Stable Isotope Probing for the Characterization of Rapidly Responding Soil Bacteria

机译:重水稳定同位素探查用于快速响应土壤细菌特性的验证

获取原文
           

摘要

Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H_(2)~(18)O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H_(2)~(18)O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H_(2)~(18)O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate ~(18)O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H_(2)~(18)O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H_(2)O, suggesting that ~(18)O incorporation into DNA is relatively stable. Furthermore, the rate of ~(18)O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO_(2) generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H_(2)~(18)O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria , Betaproteobacteria , and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H_(2)~(18)O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.
机译:细菌对环境突然变化的快速响应可能会对微生物群落的结构和功能产生重要影响。在这项研究中,我们使用重水稳定同位素探测(H_(2)〜(18)O-SIP)来识别对土壤重新润湿有反应的细菌。首先,我们进行了实验以解决有关H_(2)〜(18)O-SIP方法的不确定性。使用液相色谱-质谱(LC-MS),我们确定来自H_(2)〜(18)O的氧被掺入DNA的所有结构成分中。尽管这种掺入不均匀,但是我们可以有效地分离由(H)(2)〜(18)O孵育的实验室培养物和环境样品衍生的〜(18)O标记和未标记的DNA。我们发现没有证据表明DNA与细胞外H_(2)O之间存在氧原子的离体交换,这表明〜(18)O掺入DNA相对稳定。此外,〜(18)O掺入细菌DNA的速率很高(在48至72小时内),这与土壤重新湿润产生的CO_(2)脉冲一致。其次,我们使用H_(2)〜(18)O-SIP和16S rRNA基因的条形码焦磷酸测序技术,研究了再润湿后草原土壤细菌组成的变化。对于某些类型的土壤细菌,我们在相对分类的分辨率下观察到了相干响应。重新润湿后,Alphaproteobacteria,Betaproteobacteria和Gammaproteobacteria的相对恢复增加,而Chloroflexi和Deltaproteobacteria的相对恢复则下降。总之,我们的结果表明,H_(2)〜(18)O-SIP可有效识别影响土壤碳动态的代谢活性细菌。我们的结果有助于土壤细菌的生态学分类,同时提供对影响动态土壤水分制度下微生物群落结构和功能的某些功能性状的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号