首页> 外文期刊>Applied Microbiology >Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium
【24h】

Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium

机译:通过蓝藻中发酵碳代谢的代谢工程将还原剂通量转化为产氢

获取原文
       

摘要

Some aquatic microbial oxygenic photoautotrophs (AMOPs) make hydrogen (H_(2)), a carbon-neutral, renewable product derived from water, in low yields during autofermentation (anaerobic metabolism) of intracellular carbohydrates previously stored during aerobic photosynthesis. We have constructed a mutant (the ldhA mutant) of the cyanobacterium Synechococcus sp. strain PCC 7002 lacking the enzyme for the NADH-dependent reduction of pyruvate to d-lactate, the major fermentative reductant sink in this AMOP. Both nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) metabolomic methods have shown that autofermentation by the ldhA mutant resulted in no d-lactate production and higher concentrations of excreted acetate, alanine, succinate, and hydrogen (up to 5-fold) compared to that by the wild type. The measured intracellular NAD(P)(H) concentrations demonstrated that the NAD(P)H/NAD(P)~(+) ratio increased appreciably during autofermentation in the ldhA strain; we propose this to be the principal source of the observed increase in H_(2) production via an NADH-dependent, bidirectional [NiFe] hydrogenase. Despite the elevated NAD(P)H/NAD(P)~(+) ratio, no decrease was found in the rate of anaerobic conversion of stored carbohydrates. The measured energy conversion efficiency (ECE) from biomass (as glucose equivalents) converted to hydrogen in the ldhA mutant is 12%. Together with the unimpaired photoautotrophic growth of the ldhA mutant, these attributes reveal that metabolic engineering is an effective strategy to enhance H_(2) production in AMOPs without compromising viability.
机译:一些水生微生物的氧合自养生物(AMOPs)在先前进行的需氧光合作用的细胞内碳水化合物的自动发酵(厌氧代谢)过程中,以低收率产生氢(H_(2)),这是一种碳中性的,可再生的水产品。我们已经构建了蓝藻Synechococcus sp。的突变体(ldhA突变体)。菌株PCC 7002缺乏用于NADH依赖的丙酮酸还原为D-乳酸的酶,丙酮酸是此AMPO中的主要发酵还原剂。核磁共振(NMR)光谱和液相色谱-质谱(LC-MS)代谢组学方法均显示,ldhA突变体的自动发酵不会产生d-乳酸,并会排出更高浓度的乙酸,丙氨酸,琥珀酸和氢(最多提高5倍)。测量的细胞内NAD(P)(H)浓度表明在ldhA菌株自发酵过程中NAD(P)H / NAD(P)〜(+)比明显增加。我们建议这是通过NADH依赖的双向[NiFe]氢化酶观察到的H_(2)产量增加​​的主要来源。尽管NAD(P)H / NAD(P)〜(+)比例升高,但存储的碳水化合物的厌氧转化率并未降低。在ldhA突变体中,从生物质(以葡萄糖当量计)转化为氢的测得能量转化效率(ECE)为12%。这些属性与ldhA突变体的光合自养能力不受损害的结合在一起,揭示了代谢工程是一种有效的策略,可以提高AMOP中H_(2)的产生而又不损害其生存能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号