...
首页> 外文期刊>Applied Microbiology >Cotranslocation of Methyl Parathion Hydrolase to the Periplasm and of Organophosphorus Hydrolase to the Cell Surface of Escherichia coli by the Tat Pathway and Ice Nucleation Protein Display System
【24h】

Cotranslocation of Methyl Parathion Hydrolase to the Periplasm and of Organophosphorus Hydrolase to the Cell Surface of Escherichia coli by the Tat Pathway and Ice Nucleation Protein Display System

机译:Tat途径和冰核蛋白展示系统将甲基对硫磷水解酶共转移至周质,将有机磷水解酶共转移至大肠杆菌的细胞表面

获取原文
           

摘要

A genetically engineered Escherichia coli strain coexpressing organophosphorus hydrolase (OPH) and methyl parathion hydrolase (MPH) was constructed for the first time by cotransforming two compatible plasmids. Since these two enzymes have different substrate specificities, the coexpression strain showed a broader substrate range than strains expressing either one of the hydrolases. To reduce the mass transport limitation of organophosphates (OPs) across the cell membrane, MPH and OPH were simultaneously translocated to the periplasm and cell surface of E. coli , respectively, by employing the twin-arginine translocation (Tat) pathway and ice nucleation protein (INP) display system. The resulting recombinant strain showed sixfold-higher whole-cell activity than the control strain expressing cytosolic OP hydrolases. The correct localization of MPH and OPH was demonstrated by cell fractionation, immunoblotting, and enzyme activity assays. No growth inhibition was observed for the recombinant E. coli strain, and suspended cultures retained almost 100% of the activity over a period of 2 weeks. Owing to its high level of activity and superior stability, the recombinant E. coli strain could be employed as a whole-cell biocatalyst for detoxification of OPs. This strategy of utilizing dual translocation pathways should open up new avenues for cotranslocating multiple functional moieties to different extracytosolic compartments of a bacterial cell.
机译:通过共转化两个兼容质粒,首次构建了共表达有机磷水解酶(OPH)和甲基对硫磷水解酶(MPH)的基因工程大肠杆菌菌株。由于这两种酶具有不同的底物特异性,因此共表达菌株比表达任一水解酶的菌株显示的底物范围更广。为了减少有机磷酸酯(OPs)跨细胞膜的传质限制,通过使用双精氨酸易位(Tat)途径和冰核蛋白,将MPH和OPH同时分别易位到大肠杆菌的周质和细胞表面(INP)显示系统。所得重组菌株显示出比表达胞质OP水解酶的对照菌株高六倍的全细胞活性。通过细胞分级分离,免疫印迹和酶活性分析证明了MPH和OPH的正确定位。没有观察到重组大肠杆菌菌株的生长抑制,并且悬浮培养物在2周的时间内保留了几乎100%的活性。由于其高水平的活性和优异的稳定性,该重组大肠杆菌菌株可以用作全细胞生物催化剂来对OP进行解毒。利用双重易位途径的这种策略应开辟新的途径,用于将多个功能性部分共易位到细菌细胞的不同胞外区室。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号