首页> 外文期刊>Applied and Environmental Microbiology >Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing
【24h】

Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing

机译:稳定同位素探测在海洋油气渗漏中鉴定新型甲烷,乙烷和丙烷氧化细菌

获取原文
           

摘要

Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.
机译:海洋碳氢化合物的渗漏为沉积物和上覆水中的微生物提供了石油和天然气。我们使用稳定同位素探测(SIP)来识别需氧细菌,该细菌将位于加利福尼亚州圣塔芭芭拉(Santa Barbara)海上的Coal Oil Point渗漏场中地表沉积物中的气态烃氧化。用 13 C标记的甲烷,乙烷或丙烷孵育沉淀物后,我们确认了 13 C掺入脂肪酸和DNA中。 13 C-DNA中16S rRNA和颗粒甲烷单加氧酶( pmoA )基因的末端限制性片段长度多态性(T-RFLP)分析和测序揭示了以前没有的微生物群被认为有助于甲烷,乙烷或丙烷的氧化。首先, 13 C甲烷主要被甲基球菌科,与有关的γproteobacteria丙种细菌种吸收。嗜甲基菌科的嗜甲基菌嗜热菌。后两个属的物种以前没有被证明能氧化甲烷,并且可能已经在甲醇上交叉进料,但是两个属的物种在仅仅三天后就被大量标记。 pmoA 序列与甲基球菌科物种相关,但大多数与培养的甲烷营养菌没有密切关系。其次, 13 C乙烷被甲基球菌科的一组新成员消耗。以前没有在甲基球菌科的成员中观察到以乙烷为主要碳源的生长。在 13 C标记的DNA中检测到的高度不同的 pmoA 样基因可能编码乙烷单加氧酶。第三, 13 C丙烷被先前与丙烷氧化没有关联的一组未分类的γ变形杆菌成员消耗。这项研究确定了几种细菌谱系参与了海洋渗透物中气态碳氢化合物的氧化,并支持了某些 pmoA 样基因的替代功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号