...
首页> 外文期刊>Applied and Environmental Microbiology >Fermentation of Glycerol to Succinate by Metabolically Engineered Strains of Escherichia coli
【24h】

Fermentation of Glycerol to Succinate by Metabolically Engineered Strains of Escherichia coli

机译:大肠杆菌代谢工程菌发酵甘油发酵成琥珀酸酯

获取原文

摘要

The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD+ ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium.
机译:对大肠杆菌的发酵代谢进行了改造,以在厌氧条件下有效地将甘油转化为琥珀酸酯,而无需使用外源基因。甲酸盐和乙醇是甘油在野生型大肠杆菌ATCC 8739中的主要发酵产物,其次是琥珀酸盐和乙酸盐。在野生型菌株中丙酮酸甲酸酯裂解酶(pflB)的失活消除了甲酸酯和乙醇的产生并减少了乙酸盐的产生。然而,由于能量产生不足或电子受体水平不足,这种缺失减慢了生长并降低了细胞产量。逆向糖异生性磷酸烯醇丙酮酸羧激酶反应的方向提供了一种解决两个问题的方法,既节省了能量作为额外的ATP,又增加了电子受体(富马酸盐和苹果酸)的库。通过启动子突变(pck *)招募这种酶以增加表达,还增加了生长速率,细胞产量和琥珀酸盐的产生。推测高的NADH / NAD +比例有助于确定碳的流动方向。其他突变也是有益的。甘油脱氢酶和磷酸转移酶依赖性二羟基丙酮激酶被认为是厌氧条件下甘油代谢的主要途径。然而,对于通过工程菌株生产琥珀酸盐而言并非如此。发现删除ptsI基因或磷酸转移酶系统必需的任何其他基因可增加琥珀酸的产率。在此背景下pflB的缺失提供了琥珀酸酯产率的进一步增加。总之,这三个核心突变(pck *,ptsI和pflB)有效地将甘油中的碳流重定向到矿物盐培养基中厌氧发酵过程中最大理论产率的80%的琥珀酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号