...
首页> 外文期刊>Applied and Environmental Microbiology >Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”
【24h】

Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

机译:在氨氧化古细菌“ Candidatus Nitrosotalea devanaterra”中确定导致嗜酸的潜在机制

获取原文

摘要

Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization.
机译:氨氧化是硝化的第一步和限速步骤,主要由土壤中的两种微生物组成:氨氧化古细菌(AOA)和氨氧化细菌(AOB)。 AOA通常比AOB丰富,并且在酸性土壤中占主导地位。酸性条件下氨氧化的机理一直是一个长期的悖论。虽然在酸性土壤中经常测得很高的氨氧化速率,但当在标准实验室培养中生长时,培养的氨氧化剂仅在接近中性的pH值下生长。尽管在实验室中已经证明了许多机制可以使嗜中性AOB在较低的pH值下生长,但尚未在土壤中证明这些机制,最近对专性嗜酸性氨氧化剂“ Candidatus Nitrosotalea devanaterra”的培养为这一现象提供了更为简约的解释。观察到很高的活动率。分析Ca的测序基因组,转录活性和脂质含量。 Nitrosotalea devanaterra揭示了AOB先前提出的在低pH下生长的机制对于酸性环境中的古细菌氨氧化不是必需的。相反,基因组指示“Ca。 Nitrosotalea devanaterra”包含编码预计的高亲和力底物采集系统和嗜中性AOA中不存在的潜在pH稳态机制的基因。对mRNA的分析表明,编码所提出的稳态机制的候选基因均在嗜酸生长过程中表达,并且通过高效液相色谱-质谱(HPLC-MS)进行的脂质谱分析表明“Ca。如嗜中性AOA中发现的那样,硝基苯甲酸酯并没有以头孢烯醇为主。这项研究首次描述了专性嗜酸性氨氧化剂的基因组,并确定了可能的机制,使这种独特的表型可用于未来的生化表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号