...
首页> 外文期刊>Applied and Environmental Microbiology >Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance
【24h】

Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance

机译:酿酒酵母代谢产物的虾青素生产和氧化应激耐受性。

获取原文

摘要

The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.
机译:红色类胡萝卜素虾青素具有比其他类胡萝卜素更高的抗氧化活性,并且在水产养殖,制药和食品工业中具有巨大的商业潜力。在这项研究中,我们通过引入参与类胡萝卜素的虾青素生物合成中涉及的基因,在萌芽的酿酒酵母中产生了虾青素。尤其是,红色酵母黄单胞菌的编码植物四氢番茄红素去饱和酶(crtI产物)和双功能八氢番茄红素合酶/番茄红素环化酶(crtYB产物)的基因的表达导致啤酒酵母中少量β-胡萝卜素的积累。来自酿酒酵母(BTS1基因产物)的香叶基香叶基geranyl焦磷酸(GGPP)合酶的过表达增加了细胞内β-胡萝卜素的水平,这是由于法呢基焦磷酸被转化为GGPP所致。编码虾青素合酶(假定是细胞色素P450酶)的X. dendrorhous crtS基因的引入并未导致虾青素的产生。但是,CrtS与X. dendrorhous CrtR(一种细胞色素P450还原酶)的共表达导致少量虾青素的积累。此外,分别由细菌基因crtW和crtZ转化的生成β-胡萝卜素的酵母细胞分别编码β-胡萝卜素酮醇酶和羟化酶,也积聚了虾青素及其中间体,海chin烯酮,角黄素和玉米黄质。有趣的是,我们发现这些酮类胡萝卜素赋予了酿酒酵母细胞氧化应激耐受性。这种代谢工程具有虾青素过量生产和新的耐氧化应激酵母菌株育种的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号