...
首页> 外文期刊>Applied and Environmental Microbiology >Functional Genomic Study of Exogenous n-Butanol Stress in Escherichia coli
【24h】

Functional Genomic Study of Exogenous n-Butanol Stress in Escherichia coli

机译:大肠杆菌中外源正丁醇胁迫的功能基因组学研究

获取原文

摘要

n-Butanol has been proposed as an alternative biofuel to ethanol, and several industrially used microbes, including Escherichia coli, have been engineered to produce it. Unfortunately, n-butanol is more toxic than ethanol to these organisms. To understand the basis for its toxicity, cell-wide studies were conducted at the transcript, protein, and metabolite levels to obtain a global view of the n-butanol stress response. Analysis of the data indicates that n-butanol stress has components common to other stress responses, including perturbation of respiratory functions (nuo and cyo operons), oxidative stress (sodA, sodC, and yqhD), heat shock and cell envelope stress (rpoE, clpB, htpG, cpxR, and cpxP), and metabolite transport and biosynthesis (malE and opp operon). Assays using fluorescent dyes indicated a large increase in reactive oxygen species during n-butanol stress, confirming observations from the microarray and proteomics measurements. Mutant strains with mutations in several genes whose products changed most dramatically during n-butanol stress were examined for increased sensitivity to n-butanol. Results from these analyses allowed identification of key genes that were recruited to alleviate oxidative stress, protein misfolding, and other causes of growth defects. Cellular engineering based on these cues may assist in developing a high-titer, n-butanol-producing host.
机译:已经提出了 n -丁醇作为乙醇的替代生物燃料,并且已经设计了几种工业用微生物,包括大肠杆菌来生产它。不幸的是, n -丁醇对这些生物的毒性要比乙醇高。为了了解其毒性的基础,我们在转录本,蛋白质和代谢物水平上进行了全细胞研究,以全面了解 n -丁醇应激反应。数据分析表明, n -丁醇应激具有其他应激反应所共有的成分,包括呼吸功能的扰动( nuo cyo 操纵子) ,氧化应激( sodA sodC yqhD ),热休克和细胞膜应力( rpoE ,< em> clpB htpG cpxR cpxP ),以及代谢物转运和生物合成( malE opp 操纵子)。使用荧光染料的分析表明在 n -丁醇胁迫期间活性氧种类大大增加,从而证实了从微阵列和蛋白质组学测量中获得的观察结果。研究了在 n -丁醇胁迫期间其产物变化最大的几个基因中具有突变的突变菌株,以提高对 n -丁醇的敏感性。这些分析的结果可以鉴定出被招募来减轻氧化应激,蛋白质错误折叠和其他生长缺陷原因的关键基因。基于这些提示的细胞工程学可能有助于开发高滴度的产 n 丁醇的宿主。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号