...
首页> 外文期刊>Applied and Environmental Microbiology >Effect of Elevated Tropospheric Ozone on the Structure of Bacterial Communities Inhabiting the Rhizosphere of Herbaceous Plants Native to Germany
【24h】

Effect of Elevated Tropospheric Ozone on the Structure of Bacterial Communities Inhabiting the Rhizosphere of Herbaceous Plants Native to Germany

机译:对流层臭氧含量升高对居住于德国本土草本植物根际的细菌群落结构的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Current elevated concentrations of ozone in the atmosphere, as they are observed during summer seasons, can cause severe effects on plant vegetation. This study was initiated to analyze whether ozone-stressed plants also transfer signals below ground and thereby alter the bacterial community composition in their rhizospheres. Herbaceous plants, native to Germany, with tolerance (Anthoxanthum odoratum, Achillea millefolium, Poa pratensis, Rumex acetosa, and Veronica chamaedrys) and sensitivity (Matricaria chamomilla, Sonchus asper, and Tanacetum vulgare) to ozone, raised in the greenhouse, were exposed in open-top chambers to two different ozone regimes, i.e., “summer stress” and a normal ozone background. DNA of bacterial cells from the rhizospheres was directly extracted, and partial sequences of the 16S rRNA genes were PCR amplified with primers targeting the following phylogenetic groups: Bacteria, α-Proteobacteria, Actinobacteria, and Pseudomonas, respectively. The diversity of the amplified products was analyzed by genetic profiling based on single-strand conformation polymorphism (SSCP). Neither the tolerant nor the sensitive plants, the latter with visible above-ground damage, showed ozone-induced differences in any of the SSCP profiles, with the single exception of Actinobacteria-targeted profiles from S. asper. To increase the stress, S. asper was germinated and raised in the continuous presence of an elevated level of ozone. SSCP profiles with Bacteria-specific primers combined with gene probe hybridizations indicated an ozone-related increase in a Xanthomonas-related 16S rRNA gene and a decrease in the respective gene from the plant plastids. The fact that only this latter unrealistic scenario caused a detectable effect demonstrated that ozone stress has a surprisingly small effect on the structural diversity of the bacterial community in rhizospheres.
机译:如夏季所观察到的那样,当前大气中臭氧浓度的升高会严重影响植物的植被。开展这项研究是为了分析受臭氧胁迫的植物是否还会在地下传递信号,从而改变其根际中的细菌群落组成。在温室中暴露于德国的草本植物,其对温室中的臭氧具有耐受性(Anthoxanthum odoratum,Achillea millefolium,Poa pratensis,Rumex acetosa和Veronica chamaedrys)和敏感性(Matricaria chamomilla,Sonchus asper和Tanacetum vulgare)。开放式腔室适用于两种不同的臭氧模式,即“夏季压力”和正常的臭氧背景。直接从根际中提取细菌细胞的DNA,并分别用针对以下系统发生群的引物PCR扩增16S rRNA基因的部分序列:细菌,α-变形杆菌,放线菌和假单胞菌。通过基于单链构象多态性(SSCP)的基因分析来分析扩增产物的多样性。无论是耐受性植物还是敏感植物,后者都具有明显的地上损害,除了S. asper的放线菌靶向特征外,在任何SSCP分布图中均未显示臭氧诱导的差异。为了增加压力,在持续存在较高水平的臭氧的情况下,黑曲霉发芽并繁殖。具有细菌特异性引物的SSCP图谱与基因探针杂交相结合,表明与Xanthomonas相关的16S rRNA基因中与臭氧有关的增加以及与植物质体有关的各个基因的减少。只有后一种不切实际的情况才产生可检测到的影响这一事实表明,臭氧胁迫对根际中细菌群落的结构多样性具有令人惊讶的小影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号