首页> 外文期刊>Applied and Environmental Microbiology >Anaerobic Microbial Dissolution of Transition and Heavy Metal Oxides
【24h】

Anaerobic Microbial Dissolution of Transition and Heavy Metal Oxides

机译:过渡金属和重金属氧化物的厌氧微生物溶解

获取原文
获取外文期刊封面目录资料

摘要

Anaerobic microbial dissolution of several crystalline, water-insoluble forms of metal oxides commonly associated with the waste from energy production was investigated. An anaerobic N-fixing Clostridium sp. with an acetic, butyric, and lactic acid fermentation pattern, isolated from coal-cleaning waste, solubilized Fe2O3 and MnO2 by direct enzymatic reduction; CdO, CuO, PbO, and ZnO were solubilized by indirect action due to the production of metabolites and the lowering of the pH of the growth medium. Extracellular heat-labile components of the cell-free spent medium obtained from cultures without oxide solubilized a significant amount of Fe2O3 (1.7 μmol); however, direct contact with the bacterial cells resulted in the complete dissolution (4.8 μmol) of the oxide. Under identical conditions, the cell-free spent medium solubilized only a small amount of MnO2 (0.07 μmol), whereas 2.3 μmol of the oxide was solubilized by direct bacterial contact. Reduction of Fe2O3 and MnO2 by Clostridium sp. proceeds at different rates and, possibly, by different enzymatic systems. Fe(III) and Mn(IV) oxides appear to be used as sinks for excess electrons generated from glucose fermentation, since there is no apparent increase in growth of the bacterium concomitant with the reduction of the oxides. Dialysis bag experiments with Co2O3 indicate that there is a slight dissolution of Co (0.16 μmol) followed by precipitation or biosorption. Although Mn2O3, Ni2O3, and PbO2 may undergo reductive dissolution from a higher to a lower oxidation state, dissolution by direct or indirect action was not observed. Also, Cr2O3 and NiO were not solubilized by direct or indirect action. Significant amounts of solubilized Cd, Cu, and Pb were immobilized by the bacterial biomass, and the addition of Cu2+ inhibited the growth of the bacterium.
机译:研究了几种通常与能源生产产生的废物相关的金属氧化物的结晶性,水不溶性形式的厌氧微生物溶解情况。厌氧固氮梭菌具有乙酸,丁酸和乳酸发酵模式,通过直接酶促还原从洗煤废料中分离出可溶解的Fe2O3和MnO2;由于代谢产物的产生和生长培养基pH的降低,CdO,CuO,PbO和ZnO通过间接作用而被溶解。从不含氧化物的培养物中获得的无细胞废培养基的细胞外热不稳定成分可溶解大量的Fe2O3(1.7μmol);然而,直接与细菌细胞接触导致氧化物完全溶解(4.8μmol)。在相同条件下,无细胞的废培养基仅溶解少量的MnO2(0.07μmol),而2.3μmol的氧化物通过直接细菌接触而溶解。梭状芽孢杆菌还原Fe2O3和MnO2。可能以不同的速率,可能通过不同的酶系统进行。 Fe(III)和Mn(IV)氧化物似乎被用作葡萄糖发酵产生的过量电子的汇,因为随着氧化物的减少,细菌的生长没有明显增加。用Co2O3进行的透析袋实验表明,Co(0.16μmol)略有溶解,随后发生沉淀或生物吸附。尽管Mn2O3,Ni2O3和PbO2可能会经历从较高氧化态到较低氧化态的还原溶解,但未观察到直接或间接作用导致的溶解。而且,Cr2O3和NiO不能通过直接或间接作用溶解。细菌生物量固定了大量可溶的Cd,Cu和Pb,并且Cu2 +的添加抑制了细菌的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号