首页> 外文学位 >Reactive Transport of Heavy Metals in Lake Sediments: Impacts of Multi-Component Diffusion, Diffuse Double Layer, Dissolution of Manganese Oxides, and Water Transport in Nanotubes
【24h】

Reactive Transport of Heavy Metals in Lake Sediments: Impacts of Multi-Component Diffusion, Diffuse Double Layer, Dissolution of Manganese Oxides, and Water Transport in Nanotubes

机译:沉积物中重金属的反应性传输:多组分扩散,扩散双层,锰氧化物的溶解以及纳米管中水传输的影响

获取原文
获取原文并翻译 | 示例

摘要

Reactive transport modeling is a particularly important tool for understanding and managing the complex interrelationships between the dynamic microbial community and redox-stratified aquatic and sedimentary environments. Inorganic processes including aqueous speciation, surface complexation, mineral precipitation, and dissolution were first quantified by Sengor et al. (2007) in a biogeochemical model of heavy metal cycling in Lake Coeur d'Alene (LCdA) sediments by which data were quantified and coupled to a biotic reaction network that included multiple microbial community groups using different terminal electron acceptors. The goals of this study are to use the LCdA as an example site to apply reactive transport modeling in order to elucidate (i) the impact of MCD and EDL on reactive-diffusive transport of heavy metals; and (ii) the impact of reductive dissolution of manganese oxides and surface complexation of heavy metals onto the manganese oxides on to the overall biogeochemical cycling.;Chapter 2 assesses the impact of MCD through Nernst-Planck representation of diffusion compared to classical Fickian diffusion, on the overall dynamics of heavy metals and biogeochemical processes in environments purely governed by diffusion. The results demonstrate that the use of single uniform diffusion coefficient for modeling all species in purely diffusion dominated sediments may underestimate the mobility of heavy metals undergoing complex, multi-process reactions. This outcome is further signified when explicit treatment of EDL effects is considered in addition to MCD. The simulation results also illustrate the importance of aqueous metal (bi)sulfide complexes, especially when MCD and EDL effects are implemented in reactive transport simulations, impacting the solubility and dynamics of heavy metals in diffusion dominated systems. The competitive effects of FRB and SRB activities on pH and overall biogeochemical processes show that the system is more sensitive to the changes in Fe 3+ reduction compared to sulfate reduction. The impact of EDL implementation (in addition to MCD) using a wide range of microporosity spectrum is also assessed on the overall ion transport dynamics in the system, demonstrating the significance of accurate determination of EDL layer, based on the ionic strength of the solution.;Also building on the previous model developed by Sengor et al. (2007), Chapter 3 presents the implementation of microbial reductive dissolution of MnO2. Surface complexation of heavy metals (Pb, Zn, Cu) onto manganese oxides (HMO sites) is also considered. The model effectively simulates the mobilization of initially sorbed heavy metals (Pb, Zn, Cu) onto both manganese oxides and hydrous ferric oxides through the reductive dissolution of MnO 2 and ferrihydrite, respectively. The results suggest that the relative rate of Mn reduction (in addition to Fe3+ and sulfate reduction) plays an important role in controlling pH and mobility of heavy metals sorbed onto HMO and HFO phases. Comparative simulations of biotic and abiotic dissolution of MnO2 showed that the reductive dissolution of MnO2 in the LCdA sediments was possibly microbially mediated, rather than abiotically controlled. The biotic and abiotic reaction networks were both extended to investigate the impact of Fe and Mn adsorption onto Fe(III) (hydr)oxides (HFO sites) and MnO2 (HMO sites) on the overall dynamics. A visual comparison of the model predictions with the available field data showed that the incorporation of especially Fe sorption onto HFO sites resulted in differences between simulated and measured porewater chemistry for LCdA sediments. This could be due to the uncertainties in the concentration of surface sites available for adsorption, the presence of impurities substituted within the mineral structure affecting the reactivity, the effects of competition among dissolved species for sorption, potential pitfalls on the available sorption constant datasets, limitations on the direct applicability of sorption constants derived in the laboratory environment to the field, or reactions that are not included in the model.;Chapter 4 investigates transport in nanoporous media. For this purpose, pressure-driven transport is studied through a nano-scale media through bench-scale flow experiments. Advective transport driven by Darcy flow is the predominant mechanism of fluid transport, which is based on the continuum representation of the porous media. However, in nano-scale porous formations, such as those observed in shale reservoirs, transport of fluids exhibit substantially different physics than what is observed in larger-scale systems. In nano-scale confinements, atomic interactions between liquid and wall molecules may lead to velocity slip, no-slip or liquid adsorption on the walls (Karniadakis, et al., 2005). In this study, flow rate (Q) over a range of constant pressure conditions is measured and compared to the flow rate predictions based on the Hagen--Poiseuille equation, which corresponds to the flow rate determination without the influence of the boundary velocity slip or liquid adsorption layer effects (QNS ). (Abstract shortened by ProQuest.).
机译:反应运输模型是了解和管理动态微生物群落与氧化还原分层的水生和沉积环境之间复杂的相互关系的一个特别重要的工具。 Sengor等人首先对包括水形态,表面络合,矿物沉淀和溶解在内的无机过程进行了定量。 (2007年)在Coeur d'Alene湖(LCdA)沉积物中重金属循环的生物地球化学模型中,通过该模型对数据进行量化并耦合到生物反应网络,该网络包括使用不同的末端电子受体的多个微生物群落。这项研究的目的是以LCdA为例,进行反应性运输建模,以阐明(i)MCD和EDL对重金属的反应性扩散运输的影响; (ii)锰氧化物的还原溶解和重金属在锰氧化物上的表面络合对整个生物地球化学循环的影响。;第2章通过Nernst-Planck扩散表示与经典Fickian扩散相比,评估了MCD的影响,纯粹由扩散控制的环境中重金属和生物地球化学过程的整体动力学。结果表明,使用单一均匀扩散系数模拟纯扩散为主的沉积物中的所有物种可能会低估经历复杂,多过程反应的重金属的迁移率。当考虑除MCD之外还明确治疗EDL效果时,将进一步表明这一结果。仿真结果还说明了水性金属(双)硫化物配合物的重要性,特别是当在反应性传输模拟中实现MCD和EDL效应时,这会影响重金属在扩散主导系统中的溶解度和动力学。 FRB和SRB活性对pH和整个生物地球化学过程的竞争影响表明,与硫酸盐还原相比,该系统对Fe 3+还原的变化更敏感。还评估了使用多种微孔谱的EDL实施方案(除MCD之外)对系统中总体离子传输动力学的影响,表明了基于溶液的离子强度准确确定EDL层的重要性。 ;也基于Sengor等人先前开发的模型。 (2007年),第3章介绍了MnO2微生物还原溶解的实现。还考虑了重金属(Pb,Zn,Cu)在锰氧化物(HMO部位)上的表面络合。该模型有效地模拟了最初吸附的重金属(Pb,Zn,Cu)分别通过MnO 2和三水铁矿的还原溶解而迁移到氧化锰和含水三氧化二铁上的过程。结果表明,Mn还原的相对速率(除Fe3 +和硫酸盐还原以外)在控制pH和重金属吸附到HMO和HFO相上的迁移率方面起着重要作用。 MnO2的生物和非生物溶解的比较模拟表明,LCdA沉积物中MnO2的还原溶解可能是微生物介导的,而不是非生物控制的。扩展了生物和非生物反应网络,以研究Fe和Mn吸附到Fe(III)(氢氧化)氧化物(HFO位置)和MnO2(HMO位置)上对整体动力学的影响。对模型预测结果和可用现场数据的直观比较表明,特别是Fe吸附到HFO位点上,导致LCdA沉积物的模拟和测量孔隙水化学之间存在差异。这可能是由于可用于吸附的表面位点浓度的不确定性,矿物结构中取代的杂质的存在影响反应性,溶解物质之间竞争吸附的影响,可用吸附常数数据集上的潜在陷阱,局限性实验室环境中得出的吸附常数对现场的直接适用性,或模型中未包括的反应的直接适用性;第4章研究了在纳米多孔介质中的运输。为此,通过台规模流量实验,通过纳米级介质研究了压力驱动的运输。达西流驱动的正向传输是流体传输的主要机制,该机制基于多孔介质的连续表示。但是,在纳米级多孔地层中(例如在页岩储层中观察到的那些),流体的传输与大型系统中观察到的物理性质大不相同。在纳米范围内,液体和壁分子之间的原子相互作用可能会导致速度滑移,无滑移或液体在壁上的吸附(Karniadakis等,2005)。在这个研究中在恒定压力条件下测量流量(Q)并将其与基于Hagen-Poiseuille方程的流量预测进行比较,该方程对应于不受边界速度滑移或液体吸附层影响的流量确定效果(QNS)。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Li, Jianing.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Environmental engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号