...
首页> 外文期刊>BMC Genomics >Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes
【24h】

Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes

机译:使用带有两个染色体的细菌基因组进行第二代和第三代测序仪的性能比较

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background The availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes. Results We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418?bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58×?coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537?bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119?bp, allowing us to determine the absolute positions of all rRNA operons. Conclusions PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.
机译:背景技术多种多样的第二代和第三代测序技术可以快速确定细菌基因组的序列。然而,鉴定最适合产生具有多个染色体的完整基因组的测序技术仍然是一个挑战。我们评估了以下三个第二代测序仪的能力:罗氏454 GS Junior(GS Jr),Life Technologies离子PGM(Ion PGM)和Illumina MiSeq(MiSeq)和第三代测序仪Pacific Biosciences RS测序仪( (PacBio),通过测序和组装溶血弧菌的基因组,该基因组由包含两个环形染色体的5-Mb基因组组成。结果我们用GS Jr,离子PGM,MiSeq和PacBio对副溶血性弧菌的基因组进行了测序,并用数个基因组组装者进行了从头组装。尽管GS Jr在第二代测序仪中产生的最长平均读取长度为418?bp,但GS Jr最佳组装的最大重叠群长度为165 kbp,重叠群数量为309。产生了更大的测序覆盖范围的数据,分别为279x和1,927x。离子PGM的优化结果包含61个重叠群,这些重叠群是由77倍覆盖率的读数组装而成的,最长的重叠群大小为895 kbp。 MiSeq的那些分别为34个重叠群,58×?覆盖率和733 kbp。这些结果表明,更高的覆盖深度对于更好的组装结果是不必要的。我们观察到第二代测序仪的装配中有多个rRNA编码区被片段化,而PacBio产生了两个非常长的重叠群,分别为3,288,561和1,875,537?bps,每个都来自一条染色体,覆盖率达73x,平均读取长度3119bp,这使我们能够确定所有rRNA操纵子的绝对位置。结论就重叠群的长度而言,PacBio胜过其他测序仪,并重建了基因组的最大部分,由于其长读段,实现了“完成级”的基因组组装。它显示了用包含更多重复序列的多条染色体组装更复杂的基因组的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号