...
首页> 外文期刊>BMC Genomics >A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter?kivui
【24h】

A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter?kivui

机译:基因组指导的嗜热,无细胞色素的产乙酸细菌Thermoanaerobacter?kivui的能量守恒分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2?+?CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui. The genome of Thermoanaerobacter?kivui comprises 2.9 Mbp with a G?+?C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2?+?CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO?ATP?synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech). The thermophilic acetogen T.?kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2?+?CO2 make T.?kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.
机译:产乙酸细菌能够将CO2用作厌氧呼吸的末端电子受体,从而利用来自H2的电子产生乙酸盐。由于这一特性,乙酸原作为从诸如H2 ++ CO2和/或CO之类的废气生产生物商品的平台成为焦点。代谢工程学的先决条件是对ATP合成和电子转移反应的详细机理的理解。确保氧化还原稳态。产乙酸涉及通过可溶性酶将二氧化碳还原为乙酸盐,并通过化学渗透机制与能量守恒相结合。数十年来,作为离子泵的膜结合模块引起了人们的特别关注,最近,Rnf络合物被显示出将电子流从还原的铁氧还蛋白耦合到NAD +以及木醋杆菌中Na +的出口。但是,并非所有的产乙酸素基因组中都具有rnf基因。为了进一步了解不含Rnf的嗜热产乙酸菌的能量节约,我们对基旺厌氧嗜热菌的基因组进行了测序。嗜热厌氧杆菌的基因组包含2.9 Mbp的G3 +ΔC含量为35%和2,378个编码orfs的蛋白质。自养生长和H2 ++ CO2中乙酸的形成均不依赖于Na +,并且质子体抑制了乙酸的形成,表明H +被用作主要生物能的偶联离子。这与F1FOαATP合成酶的c亚基不具有保守的Na +结合基序的发现是一致的。寻找潜在的H +易位,膜结合蛋白复合物揭示了潜在地编码两种不同的质子减少,节能的氢酶(Ech)的基因。嗜热的乙酸原T.?kivui不使用Na +而是使用H +进行化学渗透ATP合成。它不含细胞色素,电化学质子梯度很可能是通过节能的氢化酶(Ech)建立的。它的嗜热性质和H2 ++ CO2的有效转化使T.kivui成为一种有趣的产乙酸素,可用于生产工业微生物学中的生物商品。此外,我们的实验数据以及产乙酸细菌的测序基因组数目的增加支持了将产乙酸素新分为两类:含Rnf和含Ech的产乙酸素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号