...
首页> 外文期刊>BMC Genomics >Single-base resolution methylomes of upland cotton ( Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress
【24h】

Single-base resolution methylomes of upland cotton ( Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress

机译:单基分辨率的陆地棉甲基化组(Gossypium hirsutum L.)揭示了表观基因组对干旱胁迫的响应

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background DNA methylation, with a cryptic role in genome stability, gene transcription and expression, is involved in the drought response process in plants, but the complex regulatory mechanism is still largely unknown. Results Here, we performed whole-genome bisulfite sequencing (WGBS) and identified long non-coding RNAs on cotton leaves under drought stress and re-watering treatments. We obtained 31,223 and 30,997 differentially methylated regions (representing 2.48% of the genome) after drought stress and re-watering treatments, respectively. Our data also showed that three sequence contexts, including mCpG, mCHG, mCHH, all presented a hyper-methylation pattern under drought stress and were nearly restored to normal levels after the re-watering treatment. Among all the methylation variations, asymmetric CHH methylation was the most consistent with external environments, suggesting that methylation/demethylation in a CHH context may constitute a novel epigenetic modification in response to drought stress. Combined with the targets of long non-coding RNAs, we found that long non-coding RNAs may mediate variations in methylation patterns by splicing into microRNAs. Furthermore, the many hormone-related genes with methylation variations suggested that plant hormones might be a potential mechanism in the drought response. Conclusions Future crop-improvement strategies may benefit by taking into account not only the DNA genetic variations in cotton varieties but also the epigenetic modifications of the genome.
机译:背景DNA甲基化在基因组稳定性,基因转录和表达中具有隐秘作用,参与植物的干旱响应过程,但复杂的调控机制仍是未知的。结果在这里,我们进行了全基因组亚硫酸氢盐测序(WGBS),并在干旱胁迫和复水处理下在棉花叶片上鉴定了长的非编码RNA。经过干旱胁迫和复水处理,我们分别获得了31,223个和30,997个差异甲基化区域(占基因组的2.48%)。我们的数据还显示, m CpG, m CHG, m CHH这三个序列背景在干旱胁迫下均呈现高甲基化模式再浇水后几乎恢复到正常水平。在所有甲基化变异中,不对称CHH甲基化与外部环境最一致,这表明CHH上下文中的甲基化/去甲基化可能构成了应对干旱胁迫的新型表观遗传修饰。结合长的非编码RNA的目标,我们发现长的非编码RNA可以通过剪接入microRNA介导甲基化模式的变化。此外,许多具有甲基化变异的激素相关基因提示植物激素可能是干旱反应的潜在机制。结论不仅考虑棉花品种的DNA遗传变异,而且考虑基因组的表观遗传修饰,未来的作物改良策略都可能会受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号