首页> 外文期刊>Journal of venomous animals and toxins >Mathematical modelling of vector-borne diseases and insecticide resistance evolution
【24h】

Mathematical modelling of vector-borne diseases and insecticide resistance evolution

机译:媒介传播疾病和杀虫剂抗性演变的数学模型

获取原文
           

摘要

Vector-borne diseases are important public health issues and, consequently, in silico models that simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics on the population dynamics of an epidemic. Our model consists of an ordinary differential equation system. We considered the populations of susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors, we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower mortality. Our numerical results show that the genetic composition of the vector population affects the dynamics of human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological data. The population genetics of vectors can affect epidemiological dynamics, and the presence of insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a basis for development of other models and for investigating population dynamics.
机译:媒介传播疾病是重要的公共卫生问题,因此,模拟它们的计算机模型可能会有用。易感感染恢复(SIR)模型可以模拟流行病的种群动态,并且可以轻松地适应媒介传播的疾病,而Hardy-Weinberg模型可以模拟等位基因频率,并且可以用于研究杀虫剂抗药性的演变。本研究的目的是开发一个将两个模型统一的耦合系统,从而能够分析媒介种群遗传学对流行病种群动态的影响。我们的模型由一个常微分方程组组成。我们考虑了易感,感染和康复的人群,以及易感和感染的载体。关于这些载体,我们考虑了一对等位基因,它们具有完全的优势相互作用,这些相互作用决定了杀虫剂引起的死亡率。因此,我们能够根据基因型分离载体。我们对模型进行了三个数值模拟。在模拟一中,两个等位基因均赋予相同的死亡率值,因此没有耐药菌株。在模拟2和3中,隐性和显性等位基因分别降低了死亡率。我们的数值结果表明,媒介种群的遗传组成会影响人类疾病的动态。我们发现,当没有抗药性菌株时,载体的绝对数量和被感染的载体的比例较小,而在具有杀虫剂抗性的载体的情况下,被感染者的比例较大。在所有模拟中观察到的感染人类的​​动态与真实的流行病学数据非常相似。载体的种群遗传学可以影响流行病学动态,抗药性菌株的存在可以增加感染人数。根据目前的结果,该模型是开发其他模型和调查人口动态的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号