...
首页> 外文期刊>Journal of neuroinflammation >Regulation of podosome formation, microglial migration and invasion by Ca2+-signaling molecules expressed in podosomes
【24h】

Regulation of podosome formation, microglial migration and invasion by Ca2+-signaling molecules expressed in podosomes

机译:足小体中表达的Ca 2 + 信号分子对足小体形成,小胶质细胞迁移和侵袭的调控

获取原文

摘要

Background Microglia migrate during brain development and after CNS injury, but it is not known how they degrade the extracellular matrix (ECM) to accomplish this. Podosomes are tiny structures with the unique ability to adhere to and dissolve ECM. Podosomes have a two-part architecture: a core that is rich in F-actin and actin-regulatory molecules (for example, Arp2/3), surrounded by a ring with adhesion and structural proteins (for example, talin, vinculin). We recently discovered that the lamellum at the leading edge of migrating microglia contains a large F-actin-rich superstructure (‘podonut’) composed of many podosomes. Microglia that expressed podosomes could degrade ECM molecules. Finely tuned Ca2+ signaling is important for cell migration, cell-substrate adhesion and contraction of the actomyosin network. Here, we hypothesized that podosomes contain Ca2+-signaling machinery, and that podosome expression and function depend on Ca2+ influx and specific ion channels. Methods High-resolution immunocytochemistry was used on rat microglia to identify podosomes and novel molecular components. A pharmacological toolbox was applied to functional assays. We analyzed roles of Ca2+-entry pathways and ion channels in podosome expression, microglial migration into a scratch-wound, transmigration through pores in a filter, and invasion through Matrigel?-coated filters. Results Microglial podosomes were identified using well-known components of the core (F-actin, Arp2) and ring (talin, vinculin). We discovered four novel podosome components related to Ca2+ signaling. The core contained calcium release activated calcium (CRAC; Orai1) channels, calmodulin, small-conductance Ca2+-activated SK3 channels, and ionized Ca2+ binding adapter molecule 1 (Iba1), which is used to identify microglia in the CNS. The Orai1 accessory molecule, STIM1, was also present in and around podosomes. Podosome formation was inhibited by removing external Ca2+ or blocking CRAC channels. Blockers of CRAC channels inhibited migration and invasion, and SK3 inhibition reduced invasion. Conclusions Microglia podosome formation, migration and/or invasion require Ca2+ influx, CRAC, and SK3 channels. Both channels were present in microglial podosomes along with the Ca2+-regulated molecules, calmodulin, Iba1 and STIM1. These results suggest that the podosome is a hub for sub-cellular Ca2+-signaling to regulate ECM degradation and cell migration. The findings have broad implications for understanding migration mechanisms of cells that adhere to, and dissolve ECM.
机译:背景小胶质细胞在大脑发育过程中和中枢神经系统损伤后迁移,但不知道它们如何降解细胞外基质(ECM)来完成此任务。足小体是微小的结构,具有独特的粘附和溶解ECM的能力。足小体具有两部分结构:富含F-肌动蛋白和肌动蛋白调节分子(例如Arp2 / 3)的核心,周围有一个具有粘附力和结构蛋白(例如塔林,纽扣蛋白)的环。我们最近发现,在迁移的小胶质细胞的前沿的薄层包含一个富含F-肌动蛋白的大型上层结构(“ podonut”),该结构由许多足囊组成。表达足小体的小胶质细胞可以降解ECM分子。微调的Ca2 +信号对于细胞迁移,细胞基质粘附和放线菌素网络的收缩非常重要。在这里,我们假设足小体包含Ca2 +信号转导机制,并且足小体的表达和功能取决于Ca2 +内流和特定的离子通道。方法采用高分辨率免疫细胞化学技术在大鼠小胶质细胞上鉴定足小体和新的分子成分。将药理学工具箱应用于功能测定。我们分析了Ca2 +进入途径和离子通道在足小体表达,小胶质细胞迁移到刮伤伤口,通过滤膜中的孔的迁移以及通过Matrigel?涂层滤膜的侵袭中的作用。结果小胶质囊泡是使用核心(F-肌动蛋白,Arp2)和环(塔林,纽扣蛋白)的众所周知成分鉴定的。我们发现了与Ca 2+信号传导有关的四个新颖的​​足小体成分。核心包含钙释放活化钙(CRAC; Orai1)通道,钙调蛋白,小电导Ca2 +活化的SK3通道和离子化的Ca2 +结合衔接子分子1(Iba1),用于识别CNS中的小胶质细胞。 Orai1辅助分子STIM1也存在于足小体及其周围。去除外部Ca2 +或阻断CRAC通道可抑制体形成。 CRAC通道的阻滞剂抑制迁移和侵袭,而SK3阻滞剂减少侵袭。结论小胶质细胞足小体的形成,迁移和/或侵袭需要Ca2 +流入,CRAC和SK3通道。这两个通道与Ca2 +调节分子钙调蛋白,Iba1和STIM1一起存在于小胶质足囊中。这些结果表明,足囊是亚细胞Ca2 +信号传导调节ECM降解和细胞迁移的枢纽。该发现对理解粘附和溶解ECM的细胞迁移机制具有广泛的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号