...
首页> 外文期刊>Journal of molecular cell biology >Restoring p53 in cancer: the promises and the challenges
【24h】

Restoring p53 in cancer: the promises and the challenges

机译:在癌症中恢复p53:前景与挑战

获取原文
           

摘要

This perspective was written in celebration of Dr Arnold J. Levine’s 80th birthday. I chose to write this prospective about restoration of p53 activity in tumors for two reasons: Arnie (as we all know him) has become interested in restoring p53 activity in tumor cells and such a review did not exist. Arnie was also my postdoctoral advisor and writing this perspective is just a small tribute for the huge impact he has had on my research career (and that of many others), from supporting me when I left his laboratory for a faculty position before I had even published a paper, to serving as a sounding board for numerous ideas. Arnie is an amazing thinker. He is able to almost effortlessly incorporate new knowledge into current thinking and collate a big picture. It has been my pleasure to interact with him scientifically on numerous occasions. I want to thank Arnie from the bottom of my heart for sharing with me his love of science, his critical thinking skills, and his friendship. p53 pathway inactivation The p53 tumor suppressor is inactivated in most (and possibly all) cancers via various mechanisms indicating a potent role in inhibiting tumor cell growth (). The idea of restoring wild-type p53 function in tumors has gained traction and is likely feasible in some tumors. However, since the pathway is inactivated by deletion or mutation of p53 or by overexpression of its inhibitors Mdm2 and Mdm4, amongst other mechanisms, p53 reactivation will have to be uniquely tailored to the genetics of a specific tumor type. For example, tumors with elevated levels of the p53 inhibitors Mdm2 or Mdm4, which retain a wild-type p53 gene, should be treated with drugs that disrupt binding of these inhibitors to p53 to restore p53 function. Tumors lacking p53, on the other hand, need to reintroduce p53 through a virus encoding wild-type p53 or convert mutant p53 to wild type. Genetically modified mouse models have been used to examine p53 restoration in various contexts and will be reviewed here. Tumor responses have been heterogeneous suggesting that other factors contribute to the outcome. Resistance mechanisms will also likely emerge and need to be understood in more detail. Restoring p53 in tumors lacking p53 Initial p53 reactivation studies in mouse models employed p53 alleles that were not functional but could be reactivated in a Cre-dependent manner. The Jacks laboratory generated a wild-type p53 locus with a lox-stop-lox (LSL) cassette in the first intron effectively eliminating p53 expression but allowing p53 re-expression in the presence of Cre recombinase (). They also generated a Cre-ERsupT2/sup mouse in which the Cre recombinase is active only in the presence of Tamoxifen. Similar to germline p53sup?/?/sup mice, the LSL-p53 homozygous mice with the Cre-ERsupT2/sup allele develop autochthonous lymphomas and sarcomas due to loss of p53 function. Tamoxifen injections allow tumors to re-express p53 and thus can be used to study p53 restoration. A total of 70% (7/10) of these tumors regressed and 20% showed tumor stasis (1 T-cell lymphoma and 1 osteosarcoma). One tumor lost the Cre-ERsupT2/sup allele and thus grew like controls. In this context, p53 restoration led to apoptosis in lymphomas but decreased proliferation, cell cycle arrest, and senescence in sarcomas (). In these experiments, all tumors with restoration of wild-type p53 responded albeit to varying depth. Table 1 p53 restoration models. Genotype p53 loss/restoration Tumors Effects on tumor growth Cellular response Reference p53supLSL/LSL/sup ; Cre-ERsupT2/sup Germline Lymphomas Regression Apoptosis Sarcomas Regression; stasis Cell cycle arrest; senescence p53supNeo/?/sup ; CAG-CreER Germline Lymphomas Regression Apoptosis Angiosarcomas Regression Senescence p53supNeo/R172H/sup ; CAG-CreER Germline Lymphomas Stasis Apoptosis; senescence Angiosarcomas Stasis Senescence; decreased cell proliferation p53supNeo/R172H/sup ; Cre-ERsupT2/sup Germline Lymphomas Mixed Apoptosis HaRassupV12/sup ; p53 shRNA Carcinoma only Hepatocellular carcinomas Regression Senescence; immune response Eμ-myc ; p53ERsupTAM/+/sup B-cells B-cell lymphomas Delay Apoptosis Mdm2Tg ; p53supNeo/Neo/sup ; CAG-CreER Germline Angiosarcomas Stasis Decreased proliferation; senescence Genotype p53 loss/restoration Tumors Effects on tumor growth Cellular response Reference p53supLSL/LSL/sup ; Cre-ERsupT2/sup Germline Lymphomas Regression Apoptosis Sarcomas Regression; stasis Cell cycle arrest; senescence p53supNeo/?/sup ; CAG-CreER Germline Lymphomas Regression Apoptosis Angiosarcomas Regression Senescence p53supNeo/R172H/sup ; CAG-CreER Germline Lymphomas Stasis Apoptosis; senescence Angiosarcomas Stasis Senescence; decreased cel
机译:写这个观点是为了庆祝Arnold J. Levine博士80岁生日。我之所以选择撰写有关在肿瘤中恢复p53活性的前瞻性报告,有两个原因:Arnie(众所周知)对恢复肿瘤细胞中p53的活性很感兴趣,而这种评论并不存在。 Arnie还是我的博士后顾问,写这个观点只是对他对我(以及许多其他人)的研究事业产生的巨大影响的小赞扬,从我离开我的实验室到担任教授职位之前给我的支持发表了一篇论文,作为许多想法的探空板。阿妮是一位了不起的思想家。他几乎可以毫不费力地将新知识整合到当前的思想中,并整理出一张大图。我很高兴在许多场合与他进行科学互动。我要衷心感谢Arnie与我分享他对科学的热爱,他的批判性思维能力以及他的友谊。 p53途径失活p53肿瘤抑制因子在多种癌症中可能是通过各种机制失活的,这些机制表明了在抑制肿瘤细胞生长方面的有效作用。在肿瘤中恢复野生型p53功能的想法已受到关注,并且在某些肿瘤中可能可行。但是,由于该途径由于p53的缺失或突变或其抑制剂Mdm2和Mdm4的过表达而失活,因此,p53的重新激活必须针对特定肿瘤类型的遗传学进行专门调整。例如,应使用能破坏这些抑制剂与p53结合以恢复p53功能的药物治疗具有较高水平的p53抑制剂Mdm2或Mdm4并保留野生型p53基因的肿瘤。另一方面,缺乏p53的肿瘤需要通过编码野生型p53的病毒重新引入p53或将突变型p53转化为野生型。转基因的小鼠模型已用于在各种情况下检查p53的恢复,将在这里进行综述。肿瘤反应是异质的,提示其他因素也有助于结果。抵抗机制也可能出现,需要更详细地理解。在缺乏p53的肿瘤中恢复p53在小鼠模型中,最初的p53激活研究采用了p53等位基因,这些等位基因没有功能,但可以Cre依赖性方式重新激活。 Jacks实验室在第一个内含子中产生了一个带有lox-stop-lox(LSL)盒的野生型p53基因座,有效消除了p53的表达,但允许在Cre重组酶存在下p53的重新表达。他们还产生了Cre-ER T2 小鼠,其中Cre重组酶仅在他莫昔芬存在下才有活性。与种系p53 ?/?小鼠相似,具有Cre-ER T2 等位基因的LSL-p53纯合小鼠由于p53功能的丧失而发展为自发性淋巴瘤和肉瘤。他莫昔芬注射液可使肿瘤重新表达p53,因此可用于研究p53的恢复。共有70%(7/10)的肿瘤消退,有20%的肿瘤停滞(1个T细胞淋巴瘤和1个骨肉瘤)。一个肿瘤失去了Cre-ER T2 等位基因,因此像对照组一样生长。在这种情况下,p53的恢复导致淋巴瘤细胞凋亡,但肉瘤中的增殖,细胞周期停滞和衰老降低。在这些实验中,所有恢复了野生型p53的肿瘤都对深度有所反应。表1 p53恢复模型。基因型p53丢失/恢复肿瘤对肿瘤生长的影响细胞反应参考p53 LSL / LSL ; Cre-ER T2 生殖系淋巴瘤消退凋亡肉瘤消退;停滞细胞周期停滞;衰老p53 Neo /?; CAG-CreER生殖细胞淋巴瘤消退凋亡血管肉瘤消退衰老p53 Neo / R172H ; CAG-CreER生殖细胞淋巴瘤停滞凋亡;衰老血管肉瘤停滞衰老;降低细胞增殖p53 Neo / R172H ; Cre-ER T2 生殖系淋巴瘤混合细胞凋亡HaRas V12 ; p53 shRNA癌仅适用于肝细胞癌的退化;免疫反应p53ER TAM / + B细胞B细胞淋巴瘤延迟凋亡Mdm2Tg; p53 Neo / Neo ; CAG-CreER生殖细胞血管肉瘤停滞增殖减少;衰老基因型p53丢失/恢复肿瘤对肿瘤生长的影响细胞反应参考p53 LSL / LSL ; Cre-ER T2 生殖系淋巴瘤消退凋亡肉瘤消退;停滞细胞周期停滞;衰老p53 Neo /?; CAG-CreER生殖细胞淋巴瘤消退凋亡血管肉瘤消退衰老p53 Neo / R172H ; CAG-CreER生殖细胞淋巴瘤停滞凋亡;衰老血管肉瘤停滞衰老; cel降低

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号