...
首页> 外文期刊>Journal of machine learning research >Graph Estimation From Multi-Attribute Data
【24h】

Graph Estimation From Multi-Attribute Data

机译:基于多属性数据的图形估计

获取原文
           

摘要

Undirected graphical models are important in a number of modernapplications that involve exploring or exploiting dependencystructures underlying the data. For example, they are often usedto explore complex systems where connections between entitiesare not well understood, such as in functional brain networks orgenetic networks. Existing methods for estimating structure ofundirected graphical models focus on scenarios where each noderepresents a scalar random variable, such as a binary neuralactivation state or a continuous mRNA abundance measurement,even though in many real world problems, nodes can representmultivariate variables with much richer meanings, such as wholeimages, text documents, or multi-view feature vectors. In thispaper, we propose a new principled framework for estimating thestructure of undirected graphical models from such multivariate(or multi-attribute) nodal data. The structure of a graph isinferred through estimation of non-zero partial canonicalcorrelation between nodes. Under a Gaussian model, this strategyis equivalent to estimating conditional independencies betweenrandom vectors represented by the nodes and it generalizes theclassical problem of covariance selection (Dempster, 1972). Werelate the problem of estimating non-zero partial canonicalcorrelations to maximizing a penalized Gaussian likelihoodobjective and develop a method that efficiently maximizes thisobjective. Extensive simulation studies demonstrate theeffectiveness of the method under various conditions. We provideillustrative applications to uncovering gene regulatory networksfrom gene and protein profiles, and uncovering brainconnectivity graph from positron emission tomography data.Finally, we provide sufficient conditions under which the truegraphical structure can be recovered correctly. color="gray">
机译:无方向性图形模型在许多现代应用程序中都很重要,这些应用程序包括探索或利用数据基础的依赖结构。例如,它们通常用于探索对实体之间的连接了解不多的复杂系统,例如在功能性大脑网络或遗传网络中。现有的估计无向图形模型结构的方法着重于每个节点代表一个标量随机变量(例如二进制神经激活状态或连续的mRNA丰度测量)的场景,即使在许多现实世界中的问题中,节点仍可以代表具有更丰富含义的多元变量,例如作为全图,文本文档或多视图特征向量。在本文中,我们提出了一种新的有原则的框架,用于从此类多变量(或多属性)节点数据中估计无向图形模型的结构。通过估计节点之间的非零部分典范相关性可以推断出图的结构。在高斯模型下,该策略等效于估计节点表示的随机向量之间的条件独立性,并且推广了协方差选择的经典问题(Dempster,1972)。将估计非零部分典型相关性的问题与最大化惩罚高斯似然性目标联系起来,并开发一种有效地最大化该目标的方法。大量的仿真研究证明了该方法在各种条件下的有效性。我们为从基因和蛋白质图谱中揭示基因调控网络,从正电子发射断层扫描数据中揭示大脑的连通性图提供了示例性的应用。最后,我们提供了可以正确恢复真实图形结构的充分条件。 color =“ gray”>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号