首页> 外文期刊>Journal of Materials Research and Technology >Effects of cooling rate and strain rate on phase transformation, microstructure and mechanical behaviour of thermomechanically processed pearlitic steel
【24h】

Effects of cooling rate and strain rate on phase transformation, microstructure and mechanical behaviour of thermomechanically processed pearlitic steel

机译:冷却速率和应变速率对热机械加工珠光体钢的相变,组织和力学行为的影响

获取原文
           

摘要

In the present investigation, thermomechanical controlled processing of a high carbon steel and a Nb microalloyed high carbon steel have been conducted in a Gleeble 3800 simulator. Different microscopic techniques have been utilised for the characterisation of the microstructure and hardness data has been used for the evaluation of mechanical properties. In order to suppress the transformation enthalpy, experiments are performed under varying cooling rate and strain rate. The effect of niobium microalloying leads to the lowering of recalescence and suppresses austenite to pearlite transformation start and finish temperatures at every cooling rate which leads to the refinement of interlamellar spacing and thereby improve hardness and predicted yield strength values. It is evident that a higher strain rate accelerates the kinetics of pearlite transformation and elevates the pearlite start temperature. The increase of strain rate in the range of 1s–1to 100s–1followed by a constant cooling rate (free cooling) leads to the refinement of interlamellar spacing as well as improves mechanical properties. The true stress-true strain diagram at a lower strain rate indicates higher strain hardening with sharp yield point, whereas the same at a higher strain rate indicates the sudden occurrence of strain softening. The variation in recalescence due to the alternation of the cooling rate and strain rate has been correlated with the final microstructure and mechanical properties.
机译:在本研究中,已经在Gleeble 3800仿真器中对高碳钢和Nb微合金化高碳钢进行了热机械控制处理。不同的显微技术已被用于表征微观结构,硬度数据已用于评估机械性能。为了抑制转变焓,在变化的冷却速率和应变速率下进行实验。铌微合金化的作用导致降低了再结晶,并在每个冷却速率下均抑制了奥氏体向珠光体相变的起始和结束温度,这导致了层间距的细化,从而提高了硬度并预测了屈服强度值。显然,较高的应变速率可加速珠光体相变的动力学并提高珠光体的起始温度。恒定冷却速度(自然冷却)后,应变率在1s-1至100s-1范围内增加,导致层间间距的细化并改善了机械性能。较低应变速率下的真实应力-真实应变图表示较高的应变硬化,且具有明显的屈服点,而较高应变速率下的真实应力-真实应变图表示应变软化的突然发生。由于冷却速率和应变速率的变化而引起的重新发光的变化已经与最终的微观结构和机械性能相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号