首页> 外文期刊>Journal of Materials Research and Technology >Fracture behavior of twin induced ultra-fine grained ZK61 magnesium alloy under high strain rate compression
【24h】

Fracture behavior of twin induced ultra-fine grained ZK61 magnesium alloy under high strain rate compression

机译:双应变超细晶ZK61镁合金在高应变率压缩下的断裂行为

获取原文
           

摘要

In this study ultra-fine grained single pass extruded ZK61 magnesium alloy sheet is processed at temperature 350?°C with area reduction ratio ?30. The complex dynamic mechanical behavior is studied experimentally with Split Hopkinson pressure bar over wide ranges of strain rates (1000–4000?s?1) along the normal direction. Electron backscattered diffraction, scanning electron microscopy and optical microscopy analysis are employed to reveal the changes in texture and fracture analysis. Positive strain rate sensitivity is observed up to strain rate 3000?s?1that is signature of basal slip and extension twinning although the grain size was very small. This finding is contradiction to experimental and theoretical predictions suggesting the elimination of twinning induced deformation in magnesium alloys in very fine small grains <3?μm. Flow stress and a fraction of extension twinning are apparently decreased as the applied strain rate increased from 3000 to 4000?s?1; that is attributed to adiabatic rise in temperature, early reorientation of crystal. Extensive grain reorientation causes the nucleation of extension twinning that changes fiber texture to strong double peak basal texture under high strain rate compression. Nucleation of principle crack was attributed to twin–dislocation interaction that provides dynamic recrystallized grains followed by the adiabatic shear band at the boundary of coarse grains. Contrary, secondary cracks are nucleated and propagated due to high local stresses at the triple junction of grain boundaries. Besides, scanning electron microscopy revealed ductile fracture under high strain rate compression.
机译:在这项研究中,超细晶粒单次挤压ZK61镁合金薄板在350℃的温度下加工,面积减小率≤30。使用Split Hopkinson压力棒对法线方向上大范围的应变速率(1000-4000?s?1)进行实验研究了复杂的动态力学行为。电子背散射衍射,扫描电子显微镜和光学显微镜分析被用来揭示织构和断裂分析的变化。直到应变率3000?s?1才观察到正应变率敏感性,尽管晶粒尺寸很小,但它是基底滑动和延伸孪生的标志。这一发现与实验和理论预测相矛盾,实验和理论预测表明消除了孪晶引起的镁合金中<3?μm的细小晶粒中的变形。当施加的应变速率从3000?s?1增大时,流动应力和延伸孪生分数明显降低。这归因于绝热的温度上升,晶体的早期重新定向。广泛的晶粒取向会导致延伸孪晶成核,从而在高应变率压缩下将纤维织构变为强双峰基础织构。主裂纹的成核归因于孪晶位错相互作用,它提供了动态的再结晶晶粒,随后是在粗晶粒边界处的绝热剪切带。相反,由于在晶界的三重结处的高局部应力,次级裂纹被形核并扩展。此外,扫描电子显微镜显示在高应变率压缩下的韧性断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号