首页> 外文期刊>Journal of Graph Algorithms and Applications >Exponential vs. Subexponential Tower of Hanoi Variants
【24h】

Exponential vs. Subexponential Tower of Hanoi Variants

机译:河内变种的指数塔与次指数塔

获取原文
           

摘要

We deal here with Tower of Hanoi variants played on digraphs. A major source for such variants is achieved by adding pegs and/or restricting direct moves between certain pairs of pegs. It is natural to represent a variant of this kind by a directed graph whose vertices are the pegs, and an arc from one vertex to another indicates that it is allowed to move a disk from the former peg to the latter, provided that the usual rules are not violated. We denote the number of pegs by h . For example, the variant with no restrictions on moves is represented by the Complete graph K h ; the variant in which the pegs constitute a cycle and moves are allowed only in one direction is represented by the uni-directional graph Cyclic h . For all 3-peg variants, the number of moves grows exponentially fast with n . However, for h ≥ 4 pegs, this is not the case. For example, for Cyclic h the number of moves is exponential for any h , while for a path on 4 vertices it is O (√ n 3√{2 n }). This paper characterizes the graphs for which the transfer of a tower of size n of disks from a peg to another requires exponentially many moves as a function of n . To this end we introduce the notion of a shed, as a graph property. A vertex v in a strongly-connected directed graph G =( V , E ) is a shed if the subgraph of G induced by V ( G )?{ v } contains a strongly connected subgraph on 3 or more vertices. Graphs with sheds will be shown to be much more efficient than those without sheds, for the particular domain of the Tower of Hanoi puzzle. Specifically, we show how, given a shed, we can indeed move a tower of disks from any peg to any other within O (λ n α) moves, where λ > 1 and α = 1/2 + o (1). For graphs without a shed, this is impossible.
机译:我们在这里处理在有向图中播放的河内塔变体。这种变体的主要来源是通过增加钉子和/或限制某些钉子对之间的直接移动来实现的。很自然地用有向图表示这种变体,其有向图是顶点,并且从一个顶点到另一个顶点的弧线表示允许将磁盘从前一个顶点移动到另一个顶点,但要遵循通常的规则不违反。我们用h表示钉数。例如,对移动没有限制的变体由完整图K h 表示;由单向图Cyclic h 表示其中钉构成一个循环并且仅允许在一个方向上移动的变体。对于所有3-peg变体,移动数量随着n呈指数增长。但是,对于h≥4钉,情况并非如此。例如,对于Cyclic h ,任何h的移动次数都是指数的,而对于4个顶点上的路径,其移动次数为O(√n 3 √{2 n} ) 。本文描述了这样的图形:对于这些图形,将大小为n的磁盘塔从桩转移到另一桩需要成指数函数地移动,作为n的函数。为此,我们引入棚的概念作为图形属性。如果由V(G)?{v}诱导的G的子图包含3个或更多顶点的强连接子图,则强连接的有向图G =(V,E)中的顶点v是分支。对于河内之塔难题的特定领域,带棚的图形将比没有棚的图形更加有效。具体来说,我们展示了如何在给定棚子的情况下,将磁盘塔实际上从O内的任何钉移动到其他任何钉子(λ n α )移动,其中λ> 1和α= 1/2 + o(1)。对于没有散点图,这是不可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号