首页> 外文期刊>Journal of Functional Biomaterials >Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia
【24h】

Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia

机译:磁性纳米粒子增强微波热疗的实验研究

获取原文
获取外文期刊封面目录资料

摘要

The objective of this study was to evaluate microwave heating enhancements offered by iron/iron oxide nanoparticles dispersed within tissue-mimicking media for improving efficacy of microwave thermal therapy. The following dopamine-coated magnetic nanoparticles (MNPs) were considered: 10 and 20 nm diameter spherical core/shell Fe/Fe 3 O 4 , 20 nm edge-length cubic Fe 3 O 4 , and 45 nm edge-length/10 nm height hexagonal Fe 3 O 4 . Microwave heating enhancements were experimentally measured with MNPs dissolved in an agar phantom, placed within a rectangular waveguide. Effects of MNP concentration (2.5–20 mg/mL) and microwave frequency (2.0, 2.45 and 2.6 GHz) were evaluated. Further tests with 10 and 20 nm diameter spherical MNPs dispersed within a two-compartment tissue-mimicking phantom were performed with an interstitial dipole antenna radiating 15 W power at 2.45 GHz. Microwave heating of 5 mg/mL MNP-agar phantom mixtures with 10 and 20 nm spherical, and hexagonal MNPs in a waveguide yielded heating rates of 0.78 ± 0.02 °C/s, 0.72 ± 0.01 °C/s and 0.51 ± 0.03 °C/s, respectively, compared to 0.5 ± 0.1 °C/s for control. Greater heating enhancements were observed at 2.0 GHz compared to 2.45 and 2.6 GHz. Heating experiments in two-compartment phantoms with an interstitial dipole antenna demonstrated potential for extending the radial extent of therapeutic heating with 10 and 20 nm diameter spherical MNPs, compared to homogeneous phantoms (i.e., without MNPs). Of the MNPs considered in this study, spherical Fe/Fe 3 O 4 nanoparticles offer the greatest heating enhancement when exposed to microwave radiation. These nanoparticles show strong potential for enhancing the rate of heating and radial extent of heating during microwave hyperthermia and ablation procedures.
机译:这项研究的目的是评估分散在组织模拟介质中的铁/氧化铁纳米粒子对微波加热的增强作用,以提高微波热疗的功效。考虑了以下多巴胺涂层的磁性纳米颗粒(MNP):直径为10和20 nm的球形核/壳Fe / Fe 3 O 4,边缘长度为20 nm的立方Fe 3 O 4,边缘长度为10 nm的高度为45 nm六角形的Fe 3 O 4。通过将MNP溶解在置于矩形波导内的琼脂体模中,实验性地测量了微波加热效果。评估了MNP浓度(2.5–20 mg / mL)和微波频率(2.0、2.45和2.6 GHz)的影响。使用间隙二极天线以2.45 GHz辐射15 W功率,对直径为10和20 nm的球形MNP分散在两室组织模拟体模中进行了进一步测试。在波导中用微波加热5 mg / mL的MNP-琼脂幻影混合物以及10和20 nm的球形和六边形MNP,在波导中产生的加热速率分别为0.78±0.02°C / s,0.72±0.01°C / s和0.51±0.03°C / s,相比之下,控制为0.5±0.1°C / s。与2.45和2.6 GHz相比,在2.0 GHz处观察到更大的加热增强。具有间隙偶极子天线的两室幻影的加热实验表明,与同质幻影(即不带MNP)相比,直径为10和20 nm的球形MNP可以扩大治疗性加热的径向范围。在这项研究中考虑的MNP中,球形Fe / Fe 3 O 4纳米粒子在暴露于微波辐射时可提供最大的加热增强。这些纳米颗粒显示出在微波热疗和消融过程中增强加热速率和径向加热程度的强大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号