...
首页> 外文期刊>Journal of Applied Mathematics and Physics >The Third-Order Viscoelastic Acoustic Model Enables an Ice-Detection System for a Smart Deicing of Wind-Turbine Blade Shells
【24h】

The Third-Order Viscoelastic Acoustic Model Enables an Ice-Detection System for a Smart Deicing of Wind-Turbine Blade Shells

机译:三阶粘弹性声学模型实现了冰检测系统,以实现风力涡轮机叶片壳的智能除冰

获取原文
           

摘要

The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-relaxation time (SRT) for the material and is applicable at any value of the SRT. The notion of a smart deicing system (SDS) for blade shells (BSs) of a wind turbine is specified. The work considers the stress in a BS as the one caused by the operational load on the BS. The work develops key design issues of a prospective ice-detection system (IDS) able to supply an array of the heating elements of an SDS with the element-individual spatiotemporal data and procedures for identification of the material parameters of atmospheric-ice (AI) layer accreted on the outer surfaces of the BSs. Both the SDS and IDS flexibly allow for complex, curvilinear and space-time-varying shapes of BSs. The proposed IDS presumes monitoring of the QE components of the normal stresses in BSs. The IDS is supposed to include an array of pressure-sensing resistors, also known as force-sensing resistors (FSRs), and communication hardware, as well as the parameter-identification software package (PISP), which provides the identification on the basis of the aforementioned PDE and the data measured by the FSRs. The IDS does not have hardware components located outside the outer surfaces of, or implanted in, BSs. The FSR array and communication hardware are reliable, and both cost- and energy-efficient. The present work extends methods of structural-health/operational-load monitoring (SH/OL-M) with measurements of the operational-load-caused stress in closed solid shells and, if the prospective PISP is used, endows the methods with identification of material parameters of the shells. The identification algorithms that can underlie the PISP are computationally efficient and suitable for implementation in the real-time mode. The identification model and algorithms can deal with not only the single-layer systems such as the BS layer without the AI layer or two-layer systems but also multi-layer systems. The outcomes can be applied to not only BSs of wind turbines but also non-QE closed single- or multi-layer deformable solid shells of various engineering systems (e.g., the shells of driver or passenger compartments of ships, cars, busses, airplanes, and other vehicles). The proposed monitoring of the normal-stress QE component in the mentioned shells extends the methods of SH/OL-M. The topic for the nearest research is a better adjustment of the settings for the FSR-based measurement of the mentioned components and a calibration of the parameter-identification model and algorithms, as well as the resulting improvement of the PISP.
机译:目前的工作是基于粘弹性固体声学的三阶偏微分方程(PDE)来实现的,其平均法向应力的准平衡(QE)分量为。此PDE包括材料的应力松弛时间(SRT),适用于任何SRT值。指定了用于风力涡轮机的叶片壳(BS)的智能除冰系统(SDS)的概念。这项工作认为BS中的压力是由BS上的操作负载引起的。这项工作提出了前瞻性冰探测系统(IDS)的关键设计问题,该系统能够为SDS的加热元件阵列提供元素时空数据和用于识别大气冰(AI)的材料参数的程序BS的外表面上积聚的一层。 SDS和IDS都可以灵活地实现BS的复杂,曲线和时空变化的形状。提议的IDS假定监视BS中正应力的QE分量。 IDS应该包括一系列压力传感电阻器(也称为力传感电阻器(FSR)),通信硬件以及参数识别软件包(PISP),该软件包可基于以下内容进行识别:上述PDE和FSR测量的数据。 IDS的硬件组件不位于BS的外表面之外,也没有植入其中。 FSR阵列和通信硬件可靠,并且具有成本效益和能源效率。本工作扩展了结构健康/操作负荷监测方法(SH / OL-M),通过测量密闭固体壳体中的操作负荷引起的应力,并且,如果使用预期的PISP,则可以使方法具有以下特征:壳的材料参数。可以作为PISP的基础的识别算法在计算上是有效的,并且适合在实时模式下实施。识别模型和算法不仅可以处理诸如没有AI层的BS层之类的单层系统或两层系统,而且还可以处理多层系统。结果不仅可以应用于风力涡轮机的BS,而且可以应用于各种工程系统的非QE封闭的单层或多层可变形固体壳体(例如,船舶,汽车,公共汽车,飞机,和其他车辆)。建议对上述壳中的正应力QE分量进行监控,扩展了SH / OL-M的方法。最近的研究主题是对基于FSR的上述组件的测量设置进行更好的调整,并对参数标识模型和算法进行校准,以及对PISP的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号