...
首页> 外文期刊>The Journal of biological chemistry >Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid
【24h】

Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid

机译:尿苷单磷酸合成酶可实现从喹啉酸的真核生物从头合成NAD +

获取原文
           

摘要

NAD+ biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD+ biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD+ biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD+ biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD+ biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD+ from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD+ levels and partially reversed NAD+-dependent phenotypes caused by mutation of pnc-1, which encodes a nicotinamidase required for NAD+ salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD+ homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD+ biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD+ biosynthesis creates novel possibilities for manipulating NAD+ biosynthetic pathways, which is key for the future of therapeutics.
机译:NAD +生物合成是影响健康期和肥胖相关表型以及肿瘤生长的有吸引力且有希望的治疗靶标。充分有效地利用此靶标来获得治疗益处需要对NAD +生物合成途径有完整的了解。在这里,我们报告了以前未知的作用,在NAD +生物合成中的保守的磷酸核糖基转移酶。由于所需的喹啉酸磷酸核糖基转移酶(QPRTase)未在其基因组中编码,因此秀丽隐杆线虫据报道缺乏从头的NAD +生物合成途径。但是,存在色氨酸生产喹啉酸(QA)所需的犬尿氨酸途径的所有基因。因此,我们调查了这种生物中从头NAD +生物合成的存在。通过结合同位素示踪和遗传实验,我们已经证明了通过QA从色氨酸获得的NAD +完整的从头生物合成途径的存在,突出了这一重要生物合成活性的功能保守性。补充犬尿氨酸途径中间体还可以提高pnc-1突变引起的NAD +水平和部分逆转的NAD +依赖性表型,该突变编码NAD +挽救生物合成所需的烟碱酰胺酶,表明从头合成对NAD +体内稳态的贡献。通过调查基因组中的候选磷酸核糖基转移酶基因,我们确定NAD +生物合成需要保守的尿嘧啶单磷酸磷酸核糖基转移酶(UMPS)来替代嘧啶的生物合成,以代替缺失的QPRTase。我们建议类似的UMPS地下代谢活动可能在其他生物体中起作用。 NAD +生物合成的这种机制为操纵NAD +生物合成途径创造了新的可能性,这对治疗的未来至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号