首页> 外文期刊>JMLR: Workshop and Conference Proceedings >Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems
【24h】

Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems

机译:组合划分问题算法配置的学习理论基础

获取原文
           

摘要

Max-cut, clustering, and many other partitioning problems that are of significant importance to machine learning and other scientific fields are NP-hard, a reality that has motivated researchers to develop a wealth of approximation algorithms and heuristics. Although the best algorithm to use typically depends on the specific application domain, a worst-case analysis is often used to compare algorithms. This may be misleading if worst-case instances occur infrequently, and thus there is a demand for optimization methods which return the algorithm configuration best suited for the given application’s typical inputs. Recently, Gupta and Roughgarden introduced the first learning-theoretic framework to rigorously study this problem, using it to analyze classes of greedy heuristics, parameter tuning in gradient descent, and other problems. We study this algorithm configuration problem for clustering, max-cut, and other partitioning problems, such as integer quadratic programming, by designing computationally efficient and sample efficient learning algorithms which receive samples from an application-specific distribution over problem instances and learn a partitioning algorithm with high expected performance. Our algorithms learn over common integer quadratic programming and clustering algorithm families: SDP rounding algorithms and agglomerative clustering algorithms with dynamic programming. For our sample complexity analysis, we provide tight bounds on the pseudodimension of these algorithm classes, and show that surprisingly, even for classes of algorithms parameterized by a single parameter, the pseudo-dimension is superconstant. In this way, our work both contributes to the foundations of algorithm configuration and pushes the boundaries of learning theory, since the algorithm classes we analyze consist of multi-stage optimization procedures and are significantly more complex than classes typically studied in learning theory.
机译:最大割,聚类以及许多其他对机器学习和其他科学领域非常重要的分区问题都是NP难的,这一现实促使研究人员开发了大量的近似算法和启发式算法。尽管最佳算法通常取决于特定的应用领域,但最坏情况分析通常用于比较算法。如果最坏情况的情况很少发生,这可能会产生误导,因此需要一种优化方法,这些方法可以返回最适合给定应用程序典型输入的算法配置。最近,古普塔(Gupta)和拉夫加登(Roughgarden)引入了第一个学习理论框架来严格研究该问题,并使用它来分析贪婪启发式的类别,梯度下降中的参数调整以及其他问题。我们通过设计计算效率高和样本效率高的学习算法来研究针对聚类,最大割和其他划分问题(例如整数二次规划)的算法配置问题,该算法从问题实例的特定于应用程序的分布中接收样本,并学习划分算法具有很高的预期性能。我们的算法学习了常见的整数二次规划和聚类算法系列:具有动态规划的SDP舍入算法和聚集聚类算法。对于我们的样本复杂度分析,我们为这些算法类的伪维提供了严格的界限,并且令人惊讶地表明,即使对于由单个参数参数化的算法类,伪维也是超常数。这样,我们的工作既为算法配置的基础做出了贡献,又为学习理论的发展注入了新的活力,因为我们分析的算法类别包括多阶段优化程序,并且比学习理论中通常研究的类别复杂得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号