...
首页> 外文期刊>Hydrology and Earth System Sciences >Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling
【24h】

Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

机译:对泥炭地的地下水位深度进行大规模分区,以优化温室气体排放

获取原文

摘要

Fluxes of the three main greenhouse gases (GHG) CO2, CH4 andN2O from peat and other soils with high organic carbon contents are strongly controlled by watertable depth. Information about the spatial distribution of water level isthus a crucial input parameter when upscaling GHG emissions to large scales.Here, we investigate the potential of statistical modeling for theregionalization of water levels in organic soils when data covers only asmall fraction of the peatlands of the final map. Our study area is Germany.Phreatic water level data from 53 peatlands in Germany were compiled in anew data set comprising 1094 dip wells and 7155 years of data. For each dipwell, numerous possible predictor variables were determined using nationallyavailable data sources, which included information about land cover, ditchnetwork, protected areas, topography, peatland characteristics and climaticboundary conditions. We applied boosted regression trees to identifydependencies between predictor variables and dip-well-specific long-termannual mean water level (WL) as well as a transformed form (WLt).The latter was obtained by assuming a hypothetical GHG transfer function andis linearly related to GHG emissions. Our results demonstrate that modelcalibration on WLt is superior. It increases the explained variance ofthe water level in the sensitive range for GHG emissions and avoids modelbias in subsequent GHG upscaling. The final model explained 45% ofWLt variance and was built on nine predictor variables that are basedon information about land cover, peatland characteristics, drainage network,topography and climatic boundary conditions. Their individual effects onWLt and the observed parameter interactions provide insight intonatural and anthropogenic boundary conditions that control water levels inorganic soils. Our study also demonstrates that a large fraction of theobserved WLt variance cannot be explained by nationally availablepredictor variables and that predictors with stronger WLt indication,relying, for example, on detailed water management maps and remote sensing products,are needed to substantially improve model predictive performance.
机译:泥炭和其他有机碳含量较高的土壤中的三种主要温室气体(GHG)CO 2 ,CH 4 和N 2 O的通量分别为受地下水位的高度控制。当将GHG排放量大规模提升时,有关水位空间分布的信息因此成为一个关键的输入参数。在此,当数据仅覆盖最终泥炭地的一小部分时,我们研究了统计模型对有机土壤中水位区域化的潜力。地图。我们的研究区域是德国。来自德国53个泥炭地的潜水位水位数据被汇总到一个新的数据集中,包括1094口浸水井和7155年的数据。对于每个深井,使用全国可用的数据源确定了许多可能的预测变量,其中包括有关土地覆盖,沟渠网络,保护区,地形,泥炭地特征和气候边界条件的信息。我们使用增强回归树来确定预测变量与浸井特定的长期平均水位(WL)以及转换形式(WL t )之间的依赖关系。假设的温室气体转移函数与温室气体排放线性相关。我们的结果表明,在WL t 上进行模型校准是优越的。它增加了在温室气体排放敏感范围内水位的解释方差,并避免了后续温室气体放大的模型偏差。最终模型解释了WL t 方差的45%,并基于九个预测变量建立,该变量基于有关土地覆盖,泥炭地特征,排水网络,地形和气候边界条件的信息。它们对WL t 的个体影响以及所观察到的参数相互作用提供了对控制无机土壤水位的自然和人为边界条件的了解。我们的研究还表明,观察到的WL t 方差的很大一部分不能用全国可用的预测变量来解释,而具有更强WL t 指示的预测变量,例如依赖于详细的需要水管理地图和遥感产品来大大提高模型的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号