...
首页> 外文期刊>Hydrology and Earth System Sciences >Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling
【24h】

Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

机译:对泥炭地的地下水位深度进行大规模分区,以优化温室气体排放

获取原文
获取原文并翻译 | 示例

摘要

Fluxes of the three main greenhouse gases (GHG) CO_2, CH_4 and N_2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions.We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WL_t). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WL_t is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WL_t variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WL_t and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WL_t variance cannot be explained by nationally available predictor variables and that predictors with stronger WL_t indication, relying, for example, on detailed water management maps and remote sensing products, are needed to substantially improve model predictive performance.
机译:泥炭和其他有机碳含量高的土壤中三种主要温室气体(COG,CH_4和N_2O)的通量受地下水位深度的强烈控制。因此,在将GHG排放量大规模提升时,有关水位空间分布的信息是至关重要的输入参数。在这里,当数据仅覆盖最终地图的泥炭地的一小部分时,我们调查统计模型在有机土壤中水位区域化方面的潜力。我们的学习区域是德国。来自德国的53个泥炭地的潜水水位数据被汇编到一个新的数据集中,包括1094个浸水井和7155年的数据。对于每个倾角井,使用全国可用的数据源确定了许多可能的预测变量,其中包括有关土地覆盖,沟渠网,保护区,地形,泥炭地特征和气候边界条件的信息。我们应用了增强回归树来确定预测变量之间的依存关系以及特定于井的长期长期平均水位(WL)以及转换后的形式(WL_t)。后者是通过假设假设的温室气体转移函数获得的,并且与温室气体排放呈线性关系。我们的结果表明,在WL_t上进行模型校准具有优越性。它增加了解释的温室气体排放敏感范围内水位的方差,并避免了随后的温室气体放大中的模型偏差。最终模型解释了WL_t方差的45%,并基于九个预测变量建立,该变量基于有关土地覆盖,泥炭地特征,排水网络,地形和气候边界条件的信息。它们对WL_t的个体影响以及观察到的参数相互作用为控制有机土壤中水位的自然和人为边界条件提供了见识。我们的研究还表明,观测到的WL_t方差的很大一部分无法用全国可用的预测变量来解释,并且需要WL_t指示值更高的预测变量,例如依赖于详细的水管理地图和遥感产品,才能显着改善模型预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号