首页> 外文期刊>Hereditas >Microsatellite‐based species identification method for Drosophila virilis group species
【24h】

Microsatellite‐based species identification method for Drosophila virilis group species

机译:基于微卫星的果蝇组种鉴定方法

获取原文
获取外文期刊封面目录资料

摘要

The Drosophila virilis group species have been extensively used in studies concerning genome structure, speciation and evolution of species-specific behavioural characters (Patterson and Stone 1952; Throckmorton 1982; Hoikkala et al. 2005; Routtu et al. 2007). The group consists of 11-14 species or subspecies, depending on whether D. canadiana is included, whether D. borealis is separated into eastern and western forms and whether D. americana americana and D. americana texana are classified as subspecies. Spicer and Bell (2002) have divided the group into four phylads based on the phylogeny of mitochondrial 12S and 16S rRNA genes: the virilis phylad (D. virilis, D. americana americana, D. a. texana, D. novamexicana and D. lummei), the montana phylad (D. montana, D. lacicola, D. borealis eastern and D. borealis western and D. flavomontana), the littoralis phylad (D. littoralis, D. canadiana and D. ezoana) and the kanekoi phylad represented by D. kanekoi.The species of D. virilis group are especially suitable for speciation studies as they represent different levels of divergence with an estimated time of 9.0±0.7 mya between virilis and montana phylad species and 2.6±0.4 mya between D. virilis and the other species in the virilis phylad (Nurminsky et al. 1996). Many of these species can be crossed with each other to study the genetic basis of interspecific differences (Throckmorton 1982). Also, geographically isolated populations of some species of the group offer a good opportunity to study the effects of ecological and behavioural factors on population divergence, and to trace the genetic mechanisms underlying the process. For example the divergence time between the D. montana populations from different continents is estimated to be from 0.45 to 0.9 mya (P??llysaho et al. 2005; Mirol et al. 2007).Species of the D. virilis group share some morphological characters such as a relatively large size for Drosophilidae and a dark shade around the longest cross-vein of the wing, which make identification at the group level easy. The species are, however, difficult to distinguish from each other. Researchers have used different methods for identifying the species of wild-collected flies, such as classifying the flies on the basis of external male genitalia (Lakovaara and Hackman 1973; Kulikov et al. 2004) female spermathecae (Pitnick et al. 1999), mating flies with laboratory-reared flies of known species (Liimatainen and Hoikkala 1998) and recording and analyzing the songs of wild-caught males (Huttunen et al. 2002). Species-identification has also been made by using protein gel electrophoresis (Lakovaara et al. 1976; Spicer 1991) and RAPD fingerprinting (Mikhailovsky et al. 2007). Unfortunately, these methods are not very accurate and/or they are very time consuming and require special expertise.Microsatellite markers have been used earlier to explore the phylogeny of the D. virilis group species (Orsini et al. 2004) and to map genes that affect male song traits (Huttunen et al. 2004). Orsini et al. (2004) focused their study on the species of the virilis phylad. We have used here a similar approach with a special emphasis on north-European species. The main aim of this study was to develop a fast and easy species identification method for the D. virilis group species occurring sympatrically in Northern Europe (D. montana, D. littoralis, D. ezoana and D. lummei; Aspi et al. 1993; B?chli et al. 2005). For this purpose the microsatellite locus Vir72ms appeared to be especially informative. The 14 polymorphic microsatellite loci used in the study amplified in all D. virilis group species, which gave us an opportunity also to check how well they cluster the fly strains of different species throughout the group and to identify possible misclassifications.
机译:果蝇属种已被广泛用于有关基因组结构,物种形成和物种特定行为特征演变的研究(Patterson和Stone 1952; Throckmorton 1982; Hoikkala等人2005; Routtu等人2007)。该组由11-14个物种或亚种组成,具体取决于是否包括加拿大D. canadiana,是否将D.borealis分为东方和西方形式以及美国D. americana和美国D. Americana是否被归类为亚种。 Spicer和Bell(2002)根据线粒体12S和16S rRNA基因的系统发育将其划分为四个门:维尔门(D. virilis,American.d。americana,D. a。texana,D. novamexicana and D. lummei),蒙大拿州(D. montana,D。lacicola,D.borealis东部和D.borealis西部和D.flavomontana),北海道(D. littoralis,D.canadiana和D.ezoana)和kanekoi门D. virilis组的物种特别适合于物种形成研究,因为它们代表了不同水平的差异,在virilis和montana phylad种之间的估计时间为9.0±0.7 mya,在D. virilis之间为2.6±0.4 mya。以及维尔里斯门的其他物种(Nurminsky等,1996)。这些物种中的许多可以相互杂交,以研究种间差异的遗传基础(Throckmorton 1982)。同样,该群体中某些物种的地理隔离种群也为研究生态和行为因素对种群差异的影响以及追踪该过程的遗传机制提供了一个很好的机会。例如,来自不同大陆的蒙大拿D. montana种群之间的发散时间估计为0.45至0.9 mya(P ?? llysaho等,2005; Mirol等,2007)。诸如果蝇科的相对较大的尺寸以及机翼最长的交叉静脉周围的深色阴影等字符,这使得在组级别进行识别变得容易。但是,这些物种很难区分。研究人员已经使用了不同的方法来识别野生收集的苍蝇的种类,例如根据外部雄性生殖器(Lakovaara和Hackman 1973; Kulikov等2004),雌性精子(Pitnick等1999)对苍蝇进行分类。与实验室饲养的已知物种的苍蝇(Liimatainen and Hoikkala 1998)并记录和分析野外捕获的雄性的苍蝇(Huttunen et al。2002)。还可以通过蛋白质凝胶电泳(Lakovaara等,1976; Spicer 1991)和RAPD指纹识别(Mikhailovsky等,2007)来进行物种鉴定。不幸的是,这些方法不是很准确和/或非常耗时且需要专门知识。微卫星标记已在较早之前用于探索毒线虫组种的系统发育(Orsini et al.2004)并定位那些影响男性歌曲特征(Huttunen et al。2004)。 Orsini等。 (2004)集中他们的研究对virilis门的种类。我们在这里使用了类似的方法,特别强调了北欧物种。这项研究的主要目的是开发一种快速简便的物种鉴定方法,用于在北欧同伴发生的维氏梭菌物种的鉴定(芒达纳菌,滨海梭菌,线虫梭菌和鲁米氏菌; Aspi等人,1993年)。 ; B?chli et al。2005)。为此,微卫星基因座Vir72ms似乎特别有用。该研究中使用的14个多态微卫星基因座在所有维氏梭菌群物种中均有扩增,这也为我们提供了一个机会来检查它们在整个物种群中对不同物种的蝇品系的聚集程度,并确定可能的错误分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号