首页> 外文期刊>World Allergy Organization Journal >DNA i-Motifs With Guanidino-i-Clamp Residues: The Counterplay Between Kinetics and Thermodynamics and Implications for the Design of pH Sensors
【24h】

DNA i-Motifs With Guanidino-i-Clamp Residues: The Counterplay Between Kinetics and Thermodynamics and Implications for the Design of pH Sensors

机译:具有胍基-i-钳位残基的DNA i-母体:动力学和热力学之间的反作用及其对pH传感器设计的启示

获取原文
           

摘要

I-motif structures, adopted by cytosine-rich DNA strands, have attracted considerable interest as possible regulatory elements in genomes. Applied science exploits the advantages of i-motif stabilization under acidic conditions: i-motif-based pH sensors and other biocompatible nanodevices are being developed. Two key characteristics of i-motifs as core elements of nanodevices, i.e., their stability under physiological conditions and folding/unfolding rates, still need to be improved. We have previously reported a phenoxazine derivative (i-clamp) that enhances the thermal stability of the i-motif and shifts the pH transition point closer to physiological values. Here, we performed i-clamp guanidinylation to further explore the prospects of clamp-like modifications in i-motif fine-tuning. Based on molecular modeling data, we concluded that clamp guanidinylation facilitated interstrand interactions in an i-motif core and ultimately stabilized the i-motif structure. We tested the effects of guanidino-i-clamp insertions on the thermal stabilities of genomic and model i-motifs. We also investigated the folding/unfolding kinetics of native and modified i-motifs under moderate, physiologically relevant pH alterations. We demonstrated fast folding/unfolding of native genomic and model i-motifs in response to pH stimuli. This finding supports the concept of i-motifs as possible genomic regulatory elements and encourages the future design of rapid-response pH probes based on such structures. Incorporation of guanidino-i-clamp residues atear the 5′-terminus of i-motifs dramatically decreased the apparent unfolding rates and increased the thermal stabilities of the structures. This counterplay between the effects of modifications on i-motif stability and their effects on kinetics should be taken into account in the design of pH sensors.
机译:富含胞嘧啶的DNA链采用的I型基序结构作为基因组中可能的调控元件引起了人们的极大兴趣。应用科学充分利用了在酸性条件下i-基序稳定的优势:正在开发基于i-基序的pH传感器和其他生物相容性纳米设备。作为纳米装置的核心元素的i-基序的两个关键特征,即它们在生理条件下的稳定性和折叠/展开速率仍需要改进。先前我们已经报道了吩恶嗪衍生物(i-clamp),该衍生物增强了i-基序的热稳定性,并使pH转换点更接近于生理值。在这里,我们进行了i-clamp胍基化,以进一步探索i-motif微调中的clamp-like修饰的前景。基于分子模型数据,我们得出结论,钳位胍基化促进了i-基序核心中的链间相互作用,并最终稳定了i-基序结构。我们测试了胍基-i-钳夹插入对基因组和模型i-基序的热稳定性的影响。我们还研究了在中等,生理相关的pH改变下天然和修饰i-基序的折叠/展开动力学。我们展示了响应pH刺激快速折叠/展开天然基因组和模型i-基序。这一发现支持了i-基序作为可能的基因组调控元件的概念,并鼓励了基于此类结构的快速反应pH探针的未来设计。在i-基序的5'末端/附近加入胍基-i-钳位残基极大地降低了表观展开速率并增加了结构的热稳定性。在pH传感器的设计中,应考虑修饰对i-基序稳定性的影响与它们对动力学的影响之间的反作用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号