首页> 外文期刊>Weather and Climate Extremes >Changes in precipitation extremes projected by a 20-km mesh global atmospheric model
【24h】

Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

机译:20公里网状全球大气模型预测的极端降水变化

获取原文
       

摘要

Abstract High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20?km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST) changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the Representative Concentration Pathways (RCP)-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total) increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America). South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific. Keywords Heavy precipitation ; Climate change ; High-resolution ; GCM prs.rt("abs_end"); 1. Introduction Both too much water and too little water are of great concern for human life because the contrasts in precipitation between wet and dry regions and between wet and dry seasons are projected to increase in a coming future world (Intergovernmental Panel on Climate Change (IPCC), 2013 ). Warmer climate should theoretically lead to more precipitation extremes due to increasing atmospheric water vapor content ( Allen and Ingram, 2002 and Allan and Soden, 2008 ). The intensity of precipitation extremes, however, depends on not only water vapor content but also on atmospheric environmental changes ( O'Gorman and Schneider, 2009 ). Based on global climate model (GCM) simulations of the Coupled Model Intercomparison Project Phase 3 (CMIP3, Meehl et al., 2007 ), it is assessed that the frequency of heavy precipitation or the proportion of total rainfall from heavy rainfalls will likely increase in the 21st century over many areas of the globe ( IPCC, 2012 ). The same assessment was made with the CMIP5 ( Taylor et al., 2012 ) models under Representative Concentration Pathways (RCPs) such that extreme precipitation events over most of the mid-latitude land masses and over wet tropical regions will very likely become more intense and more frequent by the end of this century, as global mean surface temperature increases ( IPCC, 2013 ). The CMIP5 models have better performance than the previous CMIP3 models in simulating precipitation extremes in the present climate ( Sillmann et al., 2013a ). A part of this improvement may come from increasing horizontal resolution, about 280?km in CMIP3 versus about 200?km in CMIP5. Spatial distribution of precipitation indices is reasonably reproduced but differences are still found in precipitation intensity where the magnitude of precipitation extremes is underestimated by climate models ( Sillmann et al., 2013a and Mehran et al., 2014 ). In a future warming world, change rate of heavy precipitation amounts will generally increase more than that of annual mean precipitation ( Tebaldi et al., 2006 , Sun et al., 2007 and Sillmann et al., 2013b ). The increasing rate of annual mean precipitation at the end of the 21st century projected by CMIP5 models in RCP8.5 scenario is 9% (median value), while that in simple daily intensity index (SDII) defined as annual total precipitation divided by the number of wet days is 12% and that in annual maximum 5-day precipitation total (R5d) is 20% ( Sillmann et al., 2013b ). This increasing rate depends on the scenario, where the change ratio of R5d is 6% in RCP2.6 and 10% in RCP4.5, respectively. Similarly, 20-year or 50-year return values of daily precipitation are projected to increase and 20-year or 50-year return periods for the present precipitation events will reduce in the future almost everywhere except for subtropical dry regions ( Kharin et al., 2013 and Toreti et al., 2013 ). The 20-year return values increase about 6% per a degree change in annual mean surface temperature, but with considerable inter-model variability ( Kharin et al., 2013 ). Large variability is also known among models in simulated increase of precipitation extremes, particularly in summer when organized convection matters ( Toreti et al., 2013 ). Both thermodynamical and dynamical factors are responsible for regional precipitation changes, with the former
机译:摘要高分辨率建模对于预测全球气候变暖下的天气和气候极端及其未来变化是必要的。一个全球高分辨率的大气总环流模型,其网格大小约为20?km,能够再现气候场以及区域性现象,如季风性降雨,热带和温带气旋以及强降水。这个20公里的网格模型用于预测21世纪末天气和极端气候的未来变化,其中海面温度(SST)的变化有四种不同的空间模式:其中28种模式的平均SST发生了变化。在代表浓度路径(RCP)-8.5情景下的耦合模型比较项目第5阶段(CMIP5),以及从聚类分析中获得的其他三个模型,对来自28个CMIP5模型的热带SST异常进行了分组。在这里,我们关注区域降水及其极端情况的未来变化。计算了二十二个区域土地域的平均降水指数。即使在平均降水量减少的地区(南非,南欧/地中海,中美洲),所有区域域的强降水指数(最大5天总降水量和最大1天总降水量)都增加。南亚是最大的极端降水增加地区。在某些地区,不同的海温模式会导致较大的降水变化,这可能与热带太平洋大规模环流的变化有关。关键词强降水;气候变化;高分辨率 ; GCM prs.rt(“ abs_end”); 1.引言过多的水和过少的水都对人类生活造成重大影响,因为在未来的未来世界中,干湿地区之间以及干湿季节之间的降水差异预计会增加(政府间气候变化专门委员会( IPCC),2013年)。理论上,由于大气中水汽含量的增加,更温暖的气候应该导致更多的极端降水(Allen和Ingram,2002; Allan和Soden,2008)。然而,极端降水的强度不仅取决于水汽含量,还取决于大气环境的变化(O'Gorman和Schneider,2009)。根据耦合模型比对项目第3阶段的全球气候模式(GCM)模拟(CMIP3,Meehl等,2007),评估结果表明,强降雨的频率或强降雨中总降雨的比例可能会增加。全球许多地区的21世纪(IPCC,2012年)。 CMIP5(泰勒等,2012)模型在“代表浓度路径”(RCPs)下也进行了同样的评估,因此,大多数中纬度土地块和热带湿润地区的极端降水事件很可能会变得更加强烈和剧烈。随着本世纪末全球平均地表温度的升高,这一现象更加频繁(IPCC,2013)。在模拟当前气候下的极端降水方面,CMIP5模型比以前的CMIP3模型具有更好的性能(Sillmann等,2013a)。这种改进的一部分可能来自水平分辨率的提高,即CMIP3中约为280?km,而CMIP5中约为200?km。降水指数的空间分布得到了合理的再现,但在降水强度上仍然存在差异,其中气候模式低估了极端降水的幅度(Sillmann等,2013a和Mehran等,2014)。在未来的变暖世界中,强降水量的变化率通常会比年平均降水量的变化增加更多(Tebaldi等,2006; Sun等,2007; Sillmann等,2013b)。 CMIP5模型在RCP8.5情景中预测的21世纪末年平均降水量增长率为9%(中值),而简单日强度指数(SDII)中的年平均降水量定义为年总降水量除以数量湿日的比例为12%,而每年最大的5天总降水量(R5d)为20%(Sillmann等,2013b)。该增长率取决于场景,其中R5d的变化率在RCP2.6中为6%,在RCP4.5中为10%。同样,预计每天降水的20年或50年回归值将增加,而当前的降水事件的20年或50年回归期将在未来除亚热带干旱地区以外的几乎所有地方减少(Kharin et al。 (2013年和Toreti等人,2013年)。 20年的返回值每平均年度地表温度每变化1%会增加约6%,但模型间的差异很大(Kharin等,2013)。在模拟的极端降水增加中,模型之间也存在较大的变异性,特别是在夏季,当有组织的对流问题发生时(Toreti等,2013)。热力学和动力学因素都与区域降水变化有关,前者

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号