首页> 外文期刊>Transactions of the Japan Society for Computational Engineering and Science >Exchange Bias in a Granular System of Antiferromagnetic Nanoparticles with Strong Magnetic Anisotropy Embedded in a Ferromagnetic Matrix
【24h】

Exchange Bias in a Granular System of Antiferromagnetic Nanoparticles with Strong Magnetic Anisotropy Embedded in a Ferromagnetic Matrix

机译:具有强磁性各向异性的反铁磁纳米粒子嵌入铁磁基体的颗粒系统中的交换偏向

获取原文
           

摘要

Recently, magnetic properties of nanoparticles have gained high interest from both technological and fundamental research, stemming partially from the applications in high-density magnetic storage media and biomedicine. In order to stabilize the recording units in nanometer scales at finite temperatures, the most challenge is to beat the superparamagnetism. Exchange bias, which represents a shift in the hysteresis loop induced by intimate contact between heterogeneous components, may be used to solve this issue. We present a nanogranular system with an antiferromagnetic-ferromagnetic cores-matrix morphology and study the interfacial-coupling and field-cooling dependence of exchange bias by conducting a modified Monte Carlo Metropolis method. When the interfacial coupling is antiferromagnetic, the competition between Zeeman and interfacial-coupling energies determines the strength and sign of exchange bias. Positive exchange bias appears when the cooling field overcomes the interfacial coupling. Whereas in the system with such a special morphology, the ferromagnetic anisotropy and exchange coupling may also determine the exchange bias behaviors to some extent when the interfacial coupling is antiferromagnetic and the strength of cooling field is intermediate. On the other hand, in the system with ferromagnetic interfacial coupling, exchange bias is negative constantly and linear roughly with not large interfacial coupling but independent of cooling field. The phenomena are clarified on the basis of the theories of surplus magnetization and pinning effect as well as by means of the microscopic spin configurations of system. [DOI: 10.1380/ejssnt.2011.126]
机译:近来,纳米颗粒的磁性已经从技术和基础研究中引起了极大的兴趣,这部分归因于在高密度磁性存储介质和生物医学中的应用。为了在有限的温度下将记录单位稳定在纳米级,最大的挑战是克服超顺磁性。交换偏压(代表由异质组件之间的紧密接触引起的磁滞回线的偏移)可用于解决此问题。我们提出了一种具有反铁磁-铁磁核-矩阵形态的纳米颗粒体系,并通过进行改进的蒙特卡洛都市方法研究了交换偏压的界面耦合和场冷依赖性。当界面耦合为反铁磁时,塞曼和界面耦合能之间的竞争决定了交换偏置的强度和符号。当冷却场克服了界面耦合时,就会出现正交换偏压。而在具有这种特殊形态的系统中,当界面耦合为反铁磁性且冷却场的强度为中等时,铁磁各向异性和交换耦合也可能在某种程度上决定交换偏置行为。另一方面,在具有铁磁界面耦合的系统中,交换偏压恒定地为负且呈线性,且界面耦合不大,但与冷却场无关。该现象是根据剩余磁化和钉扎效应的理论以及系统的微观自旋结构阐明的。 [DOI:10.1380 / ejssnt.2011.126]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号