首页> 外文期刊>The Journal of Nutrition: Official Organ of the American Institute of Nutrition >Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function
【24h】

Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function

机译:雷帕霉素的机制靶标是连接叶酸有效性和细胞功能的新型分子机制

获取原文
           

摘要

Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we propose that the underlying mechanisms involve trophoblast mTOR folate sensing resulting in inhibition of mTORC1 and mTORC2 and downregulation of placental amino acid transporters.
机译:叶酸缺乏与多种疾病有关,包括癌症,神经管缺陷和胎儿生长受限。叶酸通过参与DNA合成所需的核苷酸合成来调节细胞功能,并调节其作为甲基供体的功能,这对DNA甲基化至关重要。在这里,我们审查当前的数据,表明雷帕霉素(mTOR)的机械目标对叶酸的感应构成了一种新颖而独特的途径,叶酸可通过该途径调节细胞功能,例如营养转运,蛋白质合成和线粒体呼吸。 mTOR信号转导通路对生长因子和营养物质利用率的变化作出响应,以控制细胞的生长,增殖和代谢。 mTOR存在2个复合体,即mTOR复合体(mTORC)1和mTORC2,它们具有不同的上游调节剂和下游靶标。怀孕小鼠的叶酸缺乏导致多种母体和胎儿组织中的mTORC1和mTORC2信号转导受到明显抑制,胎盘氨基酸转运蛋白的下调和胎儿生长受限。此外,原代人滋养细胞(PHT)细胞中的叶酸缺乏导致mTORC1和mTORC2信号转导受到抑制,并降低了关键氨基酸转运蛋白的活性。 mHT在PHT细胞中感测的叶酸与高半胱氨酸的积累无关,需要质子偶联的叶酸转运蛋白(PCFT;溶质载体46A1)。此外,mTORC1和mTORC2通过调节叶酸受体α和还原的叶酸载体的细胞表面表达来调节滋养细胞叶酸的摄取。考虑到叶酸在正常细胞功能中的关键作用以及与叶酸利用度降低或过高相关的多种疾病,这些发现提供了叶酸利用度与细胞功能,生长和增殖之间的新颖联系,可能具有广泛的生物学意义。孕妇叶酸浓度低与胎儿生长受限有关,我们认为其潜在机制涉及滋养层mTOR叶酸的感应,从而导致mTORC1和mTORC2的抑制以及胎盘氨基酸转运蛋白的下调。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号