首页> 外文期刊>The Journal of Mathematical Neuroscience >Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance
【24h】

Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance

机译:二维神经模型中对振荡输入的频率偏好响应:亚阈值幅度和相位共振的几何方法

获取原文
           

摘要

We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.
机译:我们研究了二维线性和线性化生物物理(基于电导)模型中亚阈值生成和相共振的动力学机制,并扩展了分析范围,以考虑简单但不一定弱的非线性类型的影响。亚阈值共振是指神经元在优选的非零(共振)频率下对振荡输入电流表现出其电压幅度响应峰值的能力。相共振是指神经元对非零(相共振)频率的振荡输入电流表现出零相(或零相移)响应的能力。我们采用经典的相位平面分析方法来解决振荡输入的动态影响,并开发了一个包络平面图工具,该工具捕获了电导和时标在放大谐振频带上的电压响应时所起的作用,如下所示:与越来越小的频率相比。我们在分析中使用包络平面图。我们解释了为什么共振现象不一定由静止的虚构特征值的存在引起,而是由内在和输入时间尺度的相互作用产生的。我们进一步解释了,为什么时标间隔的增加会导致电压响应的放大,以及使谐振频率和相谐振频率发生偏移。这对于神经模型至关重要,因为神经元通常表现出很强的时间尺度分离。我们扩展这种方法来解释非线性对共振和相共振的影响。我们证明电压方程中的非线性会引起电压响应的放大,并会在相应的线性化模型未预测到的谐振和相谐振频率中发生偏移。非线性响应和线性预测之间的差异随着电压和门控变量之间的时间标度分隔级别的增加而增加,并且当两个方程式以可比速率发展时,它们几乎消失。相反,电压响应几乎对选通变量方程中的非线性不敏感。我们开发的方法为研究三维和非线性神经元模型以及耦合神经元的简单模型中的首选频率响应提供了一个框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号