首页> 外文期刊>The Internet Journal of Genomics and Proteomics >The Study of Biological Systems through Proteomics: A Quantitative Proteomic Analysis of Non-small Cell Lung Cancer (NSCLC)
【24h】

The Study of Biological Systems through Proteomics: A Quantitative Proteomic Analysis of Non-small Cell Lung Cancer (NSCLC)

机译:通过蛋白质组学研究生物系统:非小细胞肺癌(NSCLC)的定量蛋白质组学分析。

获取原文
           

摘要

In the post-genomic era proteomics has emerged as one of the most important areas of research, particularly with respect to differential proteomics, the comparative analysis of the normal versus disease states of distinct proteomes. The most well established tool for proteomic analysis is 2-dimensional gel electrophoresis (2-DE). This tool offers a simple method to visually identify changes in protein abundance. 2-DE has been a staple in the examination of proteomes, and has undergone numerous technological advances over the past several decades. Isobaric tags for relative and absolute quantitation (iTRAQ) is a non-gel based alternative to 2-DE as a tool for proteomic analysis. Over the last decade or more it has become a common alternative to 2-DE technology coupled with mass spectrometry. The global use and evolution of proteomics warrants incorporation of the recent advances and uses of the technology into the undergraduate laboratory curriculum to prepare students for the proteomic era. In data presented herein we utilize iTRAQ coupled with mass spectrometry as a novel approach to teach students about the identification, quantification, statistical analysis and road blocks associated with the ever advancing field of comparative proteomics. Introduction From the time when the first prokaryotic and eukaryotic genomes were released in 1995 and 1996 respectively [1,2], the field of genomics has exploded into the 21st century providing an enormous amount of information, from the complete sequencing of the human genome to global gene expression in cells, uncovering a vast, fertile landscape for bioinformatics exploration.However, despite the success of these efforts, coupling gene sequence with function remains an ongoing effort.Predictably, however, another discipline, proteomics, has been expanding alongside these technologies.Proteomics describes the methodical identification and quantification of proteins expressed in biological systems.Application of proteomics allows a researcher to obtain information on protein identity, expression level, variants, and post-translational modifications.Researchers attempted to get a head start on this type of analysis twenty years before the first genome sequences were presented [3,4].It all began with the introduction of 2-dimensional electrophoresis (2-DE) and the separation of complex mixtures for comparative expression patterns.This provided much excitement for insightful interactions in human health, agriculture, environment and biotechnology would be uncovered. 2-DE has been the most favored technology for decades, to investigate the global qualitative and quantitative proteomic changes of proteomes [5-9].2-DE gel electrophoresis offers a low cost method of protein analysis. However, it has several notable shortcomings, particularly with respect to variations in repetitive gel runs, ultimately making protein analysis a very labor-intensive and experimentally error-prone task [10]. Although modifications in methodology have helped to alleviate such issues [11] making it a reliable technology for protein profiling.Despite the global use of 2-DE in proteomic research, there is a lack of proteomics education represented in the undergraduate laboratory curriculum to prepare the future workforce.The Rochester Institute of Technology is one of the few colleges that has successfully incorporated its introduction into the science curriculum [12].There are most likely several reasons but cost, reproducibility and implementation within a semester course seem to be the most likely barriers for more widespread acceptance into undergraduate science curricula. With advances in liquid chromatography (LC), mass spectrometry (MS) and bioinformatics, newer comparative and quantitative studies are possible.LC-MS/MS is a technique coupling high pressure liquid chromatography and tandem mass spectrometry to identify protein mixtures [13, 14].When coupled with chemical tagging, LC-MS/MS allows for quantifi
机译:在后基因组时代,蛋白质组学已成为最重要的研究领域之一,特别是在差异蛋白质组学方面,对不同蛋白质组的正常状态与疾病状态进行了比较分析。蛋白质组学分析最完善的工具是二维凝胶电泳(2-DE)。该工具提供了一种简单的方法,可以直观地识别蛋白质丰度的变化。 2-DE在蛋白质组学检查中一直很重要,并且在过去的几十年中经历了许多技术进步。用于相对定量和绝对定量(iTRAQ)的等压标签是2-DE的非凝胶替代品,可作为蛋白质组学分析的工具。在过去十年或更长时间里,它已成为2-DE技术与质谱联用的常见替代方法。蛋白质组学的全球使用和发展保证将最新的技术进步和应用纳入本科实验室课程,为学生为蛋白质组学时代做准备。在本文提供的数据中,我们将iTRAQ与质谱结合使用作为一种新颖的方法来教给学生有关与比较蛋白质组学不断发展的领域相关的鉴定,定量,统计分析和障碍的知识。简介从1995年和1996年分别发布第一个原核和真核基因组之时起[1,2],基因组学领域已经发展到21世纪,从人类基因组的完整测序到基因组测序,它提供了大量的信息。细胞中的全球基因表达,为生物信息学探索开辟了广阔而肥沃的景观。然而,尽管这些努力取得了成功,但将基因序列与功能结合仍然是一项持续的工作。然而,可以预见的是,蛋白质组学的另一学科正在与这些技术一起发展蛋白质组学描述了在生物系统中表达的蛋白质的方法鉴定和定量分析,蛋白质组学的应用使研究人员可以获得有关蛋白质身份,表达水平,变体和翻译后修饰的信息。在提出第一个基因组序列前二十年进行分析[3,4]。所有这些都始于二维电泳(2-DE)的引入和复杂混合物的分离以用于比较表达模式,这为人们在人类健康,农业,环境和生物技术领域的深入互动提供了令人兴奋的发现。二十年来,2-DE一直是最受青睐的技术,用于研究蛋白质组的全球定性和定量蛋白质组学变化[5-9]。2-DE凝胶电泳提供了一种低成本的蛋白质分析方法。但是,它有几个明显的缺点,特别是在重复凝胶电泳的变化方面,最终使蛋白质分析成为一项非常费力且实验上容易出错的任务[10]。尽管方法上的修改有助于减轻此类问题[11],使其成为一种可靠的蛋白质谱分析技术。尽管在蛋白质组学研究中广泛使用了2-DE,但本科实验室课程中缺乏蛋白质组学教育以准备蛋白质组学研究。罗切斯特理工学院是成功地将其入门课程纳入科学课程的少数几所大学之一[12]。最有可能的原因有很多,但一学期课程中的成本,可重复性和实施性似乎是最可能的本科科学课程被更广泛接受的障碍。随着液相色谱(LC),质谱(MS)和生物信息学的发展,更新的比较和定量研究成为可能。LC-MS/ MS是将高压液相色谱和串联质谱结合使用以鉴定蛋白质混合物的技术[13,14 ]。结合化学标记后,LC-MS / MS可以定量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号