首页> 外文期刊>The Internet Journal of Microbiology >Phosphate Solubilization: Their Mechanism Genetics And Application
【24h】

Phosphate Solubilization: Their Mechanism Genetics And Application

机译:磷酸盐增溶:其机理遗传学及应用

获取原文
       

摘要

The global necessity to increase agricultural production from a steadily decreasing and degrading land resource base has placed considerable strain on agro ecosystems (Tilak, 2005). Current strategy is to maintain and improve agricultural productivity exclusively via the use of chemical fertilizers. Although the use of chemical fertilizers is credited with nearly fifty percent increase in agricultural production but they are closely associated with environmental pollution and health hazards (Gaur and Gaind, 1999). Many synthetic fertilizers contain acids, such as sulfuric acid and hydrochloric acid, which tend to increase the acidity of the soil, reduce the soil's beneficial organism population and interfere with plant growth. Generally, healthy soil contains enough nitrogen-fixing bacteria to fix sufficient atmospheric nitrogen to supply the needs of growing plants. However, continued use of chemical fertilizers may destroy these nitrogen-fixing bacteria. Furthermore, chemical fertilizers may affect plant health. For example, citrus trees tend to yield fruits that are lower in vitamin C when treated with synthetic fertilizer. Lack of trace elements in soil regularly dosed with chemical fertilizers is not uncommon. This lack of vital micronutrients can generally be attributed to the use of chemical fertilizers. On the other hand Biofertilizer adds nutrients to soil.Environmentally friendly biotechnological approaches offer alternatives to chemical fertilizers (Dobbelaere et al., 2003). Given the negative environmental impacts of chemical fertilizers and their increasing costs, the use of PGPB is thus being considered as an alternative or a supplemental way of reducing the use of chemicals in agriculture (De Weger et al., 1995; Gerhardson, 2002, Postma, et al., 2003; Welbaum, 2004) Introduction The global necessity to increase agricultural production from a steadily decreasing and degrading land resource base has placed considerable strain on agro ecosystems (Tilak, 2005). Current strategy is to maintain and improve agricultural productivity exclusively via the use of chemical fertilizers. Although the use of chemical fertilizers is credited with nearly fifty percent increase in agricultural production but they are closely associated with environmental pollution and health hazards (Gaur and Gaind, 1999). Many synthetic fertilizers contain acids, such as sulfuric acid and hydrochloric acid, which tend to increase the acidity of the soil, reduce the soil's beneficial organism population and interfere with plant growth. Generally, healthy soil contains enough nitrogen-fixing bacteria to fix sufficient atmospheric nitrogen to supply the needs of growing plants. However, continued use of chemical fertilizers may destroy these nitrogen-fixing bacteria. Furthermore, chemical fertilizers may affect plant health. For example, citrus trees tend to yield fruits that are lower in vitamin C when treated with synthetic fertilizer. Lack of trace elements in soil regularly dosed with chemical fertilizers is not uncommon. This lack of vital micronutrients can generally be attributed to the use of chemical fertilizers. On the other hand Biofertilizer adds nutrients to soil.Environmentally friendly biotechnological approaches offer alternatives to chemical fertilizers (Dobbelaere et al., 2003). Given the negative environmental impacts of chemical fertilizers and their increasing costs, the use of PGPB is thus being considered as an alternative or a supplemental way of reducing the use of chemicals in agriculture (De Weger et al., 1995; Gerhardson, 2002, Postma, et al., 2003; Welbaum, 2004)It has been estimated that in some soil up to 75% of applied phosphate fertilizer may become unavailable to the plant because of mineral phase reprecipitation (Goldstein, 1986; Sundara et al., 2002). Phosphate-solubilizing bacteria (PSB) are able to convert insoluble phosphates into soluble forms (Illmer and Schinner, 1995; Hilda et al., 2000ab; Peix et al., 200
机译:在全球范围内,由于土地资源基础的不断减少和退化,增加农业生产的必要性给农业生态系统带来了很大的压力(Tilak,2005)。当前的战略是仅通过使用化学肥料来维持和提高农业生产率。尽管化学肥料的使用可以使农业生产增长近50%,但是它们与环境污染和健康危害密切相关(Gaur and Gaind,1999)。许多合成肥料都含有酸,例如硫酸和盐酸,它们往往会增加土壤的酸度,减少土壤中有益的生物种群并干扰植物的生长。通常,健康的土壤含有足够的固氮细菌,以固足大气中的氮,以满足植物生长的需要。但是,继续使用化肥可能会破坏这些固氮细菌。此外,化肥可能会影响植物健康。例如,当用合成肥料处理时,柑橘树往往会产生维生素C含量较低的果实。定期添加化肥的土壤中缺乏微量元素并不少见。缺乏必需的微量营养素通常可以归因于化学肥料的使用。另一方面,生物肥料为土壤增加了养分。环保的生物技术方法提供了化肥的替代品(Dobbelaere等,2003)。考虑到化肥对环境的不利影响及其成本增加,因此,人们认为PGPB的使用是减少农业中使用化学药品的替代方法或补充方法(De Weger等,1995; Gerhardson,2002,Postma等,2003; Welbaum,2004)引言从稳定减少和退化的土地资源基础上增加农业生产的全球必要性给农业生态系统带来了很大的压力(Tilak,2005)。当前的策略是仅通过使用化学肥料来维持和提高农业生产率。尽管化学肥料的使用可以使农业生产增长近50%,但是它们与环境污染和健康危害密切相关(Gaur and Gaind,1999)。许多合成肥料都含有酸,例如硫酸和盐酸,它们往往会增加土壤的酸度,减少土壤中有益的生物种群并干扰植物的生长。通常,健康的土壤含有足够的固氮细菌,以固足大气中的氮,以满足植物生长的需要。但是,继续使用化肥可能会破坏这些固氮细菌。此外,化肥可能会影响植物健康。例如,当用合成肥料处理时,柑橘树往往会产生维生素C含量较低的果实。定期添加化肥的土壤中缺乏微量元素并不少见。缺乏必需的微量营养素通常可以归因于化学肥料的使用。另一方面,生物肥料为土壤增加了养分。环保的生物技术方法提供了化肥的替代品(Dobbelaere等,2003)。考虑到化肥对环境的不利影响及其成本增加,因此,人们认为PGPB的使用是减少农业中使用化学药品的替代方法或补充方法(De Weger等,1995; Gerhardson,2002,Postma等人,2003; Welbaum,2004)据估计,在某些土壤中,由于矿物相的再沉淀,高达75%的磷肥可能无法用于植物(Goldstein,1986; Sundara等人,2002)。 。磷酸盐增溶细菌(PSB)能够将不溶性磷酸盐转化为可溶形式(Illmer和Schinner,1995; Hilda等,2000ab; Peix等,200

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号